Distributed Self Localisation of Sensor Networks using Particle Methods

N. Kantas, Sumeetpal S. Singh, A. Doucet
{"title":"Distributed Self Localisation of Sensor Networks using Particle Methods","authors":"N. Kantas, Sumeetpal S. Singh, A. Doucet","doi":"10.1109/NSSPW.2006.4378845","DOIUrl":null,"url":null,"abstract":"We describe how a completely decentralized version of Recursive Maximum Likelihood (RML) can be implemented in dynamic graphical models through the propagation of suitable messages that are exchanged between neighbouring nodes of the graph. The resulting algorithm can be interpreted as a generalization of the celebrated belief propagation algorithm to compute likelihood gradients. This algorithm is applied to solve the sensor localisation problem for distributed trackers forming a sensor networks. An implementation is given for dynamic nonlinear model without loops using Sequential Monte Carlo (SMC) or particle","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We describe how a completely decentralized version of Recursive Maximum Likelihood (RML) can be implemented in dynamic graphical models through the propagation of suitable messages that are exchanged between neighbouring nodes of the graph. The resulting algorithm can be interpreted as a generalization of the celebrated belief propagation algorithm to compute likelihood gradients. This algorithm is applied to solve the sensor localisation problem for distributed trackers forming a sensor networks. An implementation is given for dynamic nonlinear model without loops using Sequential Monte Carlo (SMC) or particle
基于粒子方法的传感器网络分布式自定位
我们描述了如何通过在图的相邻节点之间交换的适当消息的传播,在动态图形模型中实现完全分散的递归最大似然(RML)版本。由此产生的算法可以解释为著名的信念传播算法的推广,以计算似然梯度。该算法用于解决分布式跟踪器组成传感器网络时的传感器定位问题。给出了用序列蒙特卡罗(SMC)或粒子法求解无环动态非线性模型的实现方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信