Prediction of Cancer Patient Outcomes Based on Artificial Intelligence

Suk Lee, E. Ju, Suk Woo Choi, Hyungju Lee, J. Shim, K. Chang, Kwang Hyeon Kim, C. Kim
{"title":"Prediction of Cancer Patient Outcomes Based on Artificial Intelligence","authors":"Suk Lee, E. Ju, Suk Woo Choi, Hyungju Lee, J. Shim, K. Chang, Kwang Hyeon Kim, C. Kim","doi":"10.5772/INTECHOPEN.81872","DOIUrl":null,"url":null,"abstract":"Knowledge-based outcome predictions are common before radiotherapy. Because there are various treatment techniques, numerous factors must be considered in predicting cancer patient outcomes. As expectations surrounding personalized radiotherapy using complex data have increased, studies on outcome predictions using artificial intelligence have also increased. Representative artificial intelligence techniques used to predict the outcomes of cancer patients in the field of radiation oncology include collecting and processing big data, text mining of clinical literature, and machine learning for implementing prediction models. Here, methods of data preparation and model construction to predict rates of survival and toxicity using artificial intelligence are described.","PeriodicalId":170040,"journal":{"name":"Artificial Intelligence - Scope and Limitations","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence - Scope and Limitations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Knowledge-based outcome predictions are common before radiotherapy. Because there are various treatment techniques, numerous factors must be considered in predicting cancer patient outcomes. As expectations surrounding personalized radiotherapy using complex data have increased, studies on outcome predictions using artificial intelligence have also increased. Representative artificial intelligence techniques used to predict the outcomes of cancer patients in the field of radiation oncology include collecting and processing big data, text mining of clinical literature, and machine learning for implementing prediction models. Here, methods of data preparation and model construction to predict rates of survival and toxicity using artificial intelligence are described.
基于人工智能的癌症患者预后预测
基于知识的预后预测在放疗前很常见。由于有各种各样的治疗技术,在预测癌症患者的预后时必须考虑许多因素。随着对使用复杂数据的个性化放疗的期望增加,使用人工智能预测结果的研究也有所增加。在放射肿瘤学领域,用于预测癌症患者预后的代表性人工智能技术包括收集和处理大数据、临床文献的文本挖掘以及实现预测模型的机器学习。本文描述了使用人工智能来预测存活率和毒性的数据准备和模型构建方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信