Violence Recognition from Videos using Deep Learning Techniques

Mohamed Soliman, Mohamed Hussein Kamal, Mina Abd El-Massih Nashed, Y. Mostafa, Bassel S. Chawky, D. Khattab
{"title":"Violence Recognition from Videos using Deep Learning Techniques","authors":"Mohamed Soliman, Mohamed Hussein Kamal, Mina Abd El-Massih Nashed, Y. Mostafa, Bassel S. Chawky, D. Khattab","doi":"10.1109/ICICIS46948.2019.9014714","DOIUrl":null,"url":null,"abstract":"Automatic recognition of violence between individuals or crowds in videos has a broad interest. In this work, an end-to-end deep neural network model for the purpose of recognizing violence in videos is proposed. The proposed model uses a pre-trained VGG-16 on ImageNet as spatial feature extractor followed by Long Short-Term Memory (LSTM) as temporal feature extractor and sequence of fully connected layers for classification purpose. The achieved accuracy is near state-of-the-art. Also, we contribute by introducing a new benchmark called Real- Life Violence Situations which contains 2000 short videos divided into 1000 violence videos and 1000 non-violence videos. The new benchmark is used for fine-tuning the proposed models achieving a best accuracy of 88.2%.","PeriodicalId":200604,"journal":{"name":"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS46948.2019.9014714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Automatic recognition of violence between individuals or crowds in videos has a broad interest. In this work, an end-to-end deep neural network model for the purpose of recognizing violence in videos is proposed. The proposed model uses a pre-trained VGG-16 on ImageNet as spatial feature extractor followed by Long Short-Term Memory (LSTM) as temporal feature extractor and sequence of fully connected layers for classification purpose. The achieved accuracy is near state-of-the-art. Also, we contribute by introducing a new benchmark called Real- Life Violence Situations which contains 2000 short videos divided into 1000 violence videos and 1000 non-violence videos. The new benchmark is used for fine-tuning the proposed models achieving a best accuracy of 88.2%.
使用深度学习技术从视频中识别暴力
自动识别视频中个人或群体之间的暴力行为有着广泛的兴趣。在这项工作中,提出了一种端到端深度神经网络模型,用于识别视频中的暴力。该模型使用ImageNet上预训练的VGG-16作为空间特征提取器,使用长短期记忆(LSTM)作为时间特征提取器,并使用全连接层序列进行分类。达到的精度接近最先进的水平。此外,我们还推出了一个名为“现实生活中的暴力情况”的新基准,其中包含2000个短视频,分为1000个暴力视频和1000个非暴力视频。使用新基准对所提出的模型进行微调,获得了88.2%的最佳精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信