Larry Gonz'alez, Alexander E. Ivliev, M. Krötzsch, Stephan Mennicke
{"title":"Efficient Dependency Analysis for Rule-Based Ontologies","authors":"Larry Gonz'alez, Alexander E. Ivliev, M. Krötzsch, Stephan Mennicke","doi":"10.48550/arXiv.2207.09669","DOIUrl":null,"url":null,"abstract":". Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about com-putational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores ) on practical ontologies.","PeriodicalId":342971,"journal":{"name":"International Workshop on the Semantic Web","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.09669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
. Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about com-putational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores ) on practical ontologies.