Aggregates caching for enterprise applications

Stephan Müller
{"title":"Aggregates caching for enterprise applications","authors":"Stephan Müller","doi":"10.1109/ICDEW.2014.6818353","DOIUrl":null,"url":null,"abstract":"Modern enterprise applications generate a mixed workload comprised of short-running transactional queries and long-running analytical queries containing expensive aggregations. Based on the fact that columnar in-memory databases are capable of handling these mixed workloads, we evaluate how existing materialized view maintenance strategies can accelerate the execution of aggregate queries. We contribute by introducing a novel materialized view maintenance approach that leverages the main-delta architecture of columnar storage, outperforming existing strategies for a wide range of workloads. As an optimization, we further propose an approach that adapts the aggregate maintenance strategy based upon the currently monitored workload characteristics.","PeriodicalId":302600,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering Workshops","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2014.6818353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern enterprise applications generate a mixed workload comprised of short-running transactional queries and long-running analytical queries containing expensive aggregations. Based on the fact that columnar in-memory databases are capable of handling these mixed workloads, we evaluate how existing materialized view maintenance strategies can accelerate the execution of aggregate queries. We contribute by introducing a novel materialized view maintenance approach that leverages the main-delta architecture of columnar storage, outperforming existing strategies for a wide range of workloads. As an optimization, we further propose an approach that adapts the aggregate maintenance strategy based upon the currently monitored workload characteristics.
为企业应用程序聚合缓存
现代企业应用程序生成混合工作负载,包括短时间运行的事务性查询和包含昂贵聚合的长时间运行的分析性查询。基于列式内存数据库能够处理这些混合工作负载的事实,我们评估了现有物化视图维护策略如何加速聚合查询的执行。我们通过引入一种新的物化视图维护方法做出贡献,该方法利用了列式存储的主增量架构,在各种工作负载下优于现有策略。作为优化,我们进一步提出了一种方法,该方法根据当前监控的工作负载特征调整聚合维护策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信