Adversarial Iris Super Resolution

Yanqing Guo, Qianyu Wang, Huaibo Huang, Xin Zheng, Zhaofeng He
{"title":"Adversarial Iris Super Resolution","authors":"Yanqing Guo, Qianyu Wang, Huaibo Huang, Xin Zheng, Zhaofeng He","doi":"10.1109/ICB45273.2019.8987243","DOIUrl":null,"url":null,"abstract":"Low resolution iris images often degrade iris recognition performance due to the lack of enough texture details. This paper proposes an adversarial iris super resolution method using a densely connected convolutional network and the adversarial learning, namely IrisDNet. The densely connected network is employed for maximum information flow between layers to achieve high iris texture reconstruction performance. An adversarial network is further incorporated into the densely connected network to sharpen texture details of iris. Moreover, for the identity persistence, we employ a pretrained network to compute an identity preserving loss to achieve semantic preserved patterns. Extensive experiments of super resolution and iris verification on multiple upscaling factors demonstrate that the proposed method achieves pleasing results with abundant high-frequency textures while maintaining identity information.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Low resolution iris images often degrade iris recognition performance due to the lack of enough texture details. This paper proposes an adversarial iris super resolution method using a densely connected convolutional network and the adversarial learning, namely IrisDNet. The densely connected network is employed for maximum information flow between layers to achieve high iris texture reconstruction performance. An adversarial network is further incorporated into the densely connected network to sharpen texture details of iris. Moreover, for the identity persistence, we employ a pretrained network to compute an identity preserving loss to achieve semantic preserved patterns. Extensive experiments of super resolution and iris verification on multiple upscaling factors demonstrate that the proposed method achieves pleasing results with abundant high-frequency textures while maintaining identity information.
对抗性虹膜超分辨率
由于缺乏足够的纹理细节,低分辨率的虹膜图像往往会降低虹膜识别的性能。本文提出了一种基于密集连接卷积网络和对抗学习的对抗虹膜超分辨方法,即IrisDNet。利用密集连接的网络实现层与层之间最大的信息流,达到较高的虹膜纹理重建性能。在密集连接的网络中进一步加入对抗网络来锐化虹膜纹理细节。此外,对于身份持久性,我们采用预训练的网络来计算身份保留损失,以获得语义保留模式。大量的超分辨率和多尺度上的虹膜验证实验表明,该方法在保持身份信息的同时,获得了丰富的高频纹理,效果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信