Data-driven Model Predictive Control for Drop Foot Correction

Mayank Singh, Nitin Sharma
{"title":"Data-driven Model Predictive Control for Drop Foot Correction","authors":"Mayank Singh, Nitin Sharma","doi":"10.23919/ACC55779.2023.10156600","DOIUrl":null,"url":null,"abstract":"Functional Electrical Stimulation (FES) is an effective method to restore the normal range of ankle motion in people with Drop Foot. This paper aims to develop a real-time, data-driven Model Predictive Control (MPC) scheme of FES for drop foot correction (DFC). We utilize a Koopman operator-based framework for system identification required for setting up the MPC scheme. Using the Koopman operator we can fully capture the nonlinear dynamics through an infinite dimensional linear operator describing the evolution of functions of state space. We use inertial measurement units (IMUs) for collecting the foot pitch and roll rate state information to build an approximate linear predictor for FES actuated ankle motion. In doing so, we also account for the implicit muscle actuation dynamics which are dependent on the activation and fatigue levels of the Tibialis Anterior (TA) muscle contribution during ankle motion, and hence, develop a relationship between FES input parameters and ankle motion, tailored to an individual user. The approximation, although computationally expensive, leads to reformulating the optimization problem as a quadratic program for the MPC problem. Further, we show the closed-loop system’s recursive feasibility and asymptotic stability analysis. Simulation and experimental results from a subject with Multiple Sclerosis show the effectiveness of the data-driven MPC scheme of FES for DFC.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional Electrical Stimulation (FES) is an effective method to restore the normal range of ankle motion in people with Drop Foot. This paper aims to develop a real-time, data-driven Model Predictive Control (MPC) scheme of FES for drop foot correction (DFC). We utilize a Koopman operator-based framework for system identification required for setting up the MPC scheme. Using the Koopman operator we can fully capture the nonlinear dynamics through an infinite dimensional linear operator describing the evolution of functions of state space. We use inertial measurement units (IMUs) for collecting the foot pitch and roll rate state information to build an approximate linear predictor for FES actuated ankle motion. In doing so, we also account for the implicit muscle actuation dynamics which are dependent on the activation and fatigue levels of the Tibialis Anterior (TA) muscle contribution during ankle motion, and hence, develop a relationship between FES input parameters and ankle motion, tailored to an individual user. The approximation, although computationally expensive, leads to reformulating the optimization problem as a quadratic program for the MPC problem. Further, we show the closed-loop system’s recursive feasibility and asymptotic stability analysis. Simulation and experimental results from a subject with Multiple Sclerosis show the effectiveness of the data-driven MPC scheme of FES for DFC.
落脚校正的数据驱动模型预测控制
功能电刺激(FES)是一种有效的方法,以恢复踝关节活动范围的人落脚。本文旨在开发一种实时、数据驱动的FES模型预测控制(MPC)方案,用于落脚校正(DFC)。我们利用基于Koopman算子的框架进行系统识别,以建立MPC方案。利用库普曼算子,我们可以通过描述状态空间函数演化的无限维线性算子来充分捕捉非线性动力学。我们使用惯性测量单元(imu)来收集足部俯仰和滚转速率状态信息,以建立FES驱动踝关节运动的近似线性预测器。在此过程中,我们还考虑了隐含的肌肉驱动动力学,这取决于踝关节运动期间胫骨前肌(TA)的激活和疲劳水平,因此,开发了FES输入参数与踝关节运动之间的关系,为个人用户量身定制。这种近似虽然计算代价昂贵,但可以将优化问题重新表述为MPC问题的二次规划。进一步给出了闭环系统的递推可行性和渐近稳定性分析。一个多发性硬化症患者的仿真和实验结果表明了FES数据驱动MPC方案在DFC中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信