On regular quasicyclic LDPC codes from binomials

R. Smarandache, P. Vontobel
{"title":"On regular quasicyclic LDPC codes from binomials","authors":"R. Smarandache, P. Vontobel","doi":"10.1109/ISIT.2004.1365314","DOIUrl":null,"url":null,"abstract":"In the past, several authors have considered quasicyclic LDPC codes whose circulant matrices in the parity-check matrix are cyclically shifted identity matrices. By composing a parity-check matrix not only with such matrices but also with sums of two cyclically shifted identity matrices and with zero matrices, one can increase the minimum distance while keeping the same regularity. Specifically, whereas for (3, 4)-regular codes in the first class the best minimum distance is 24, the best minimum distance in the second class is 32. We give examples of codes that achieve these bounds.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

In the past, several authors have considered quasicyclic LDPC codes whose circulant matrices in the parity-check matrix are cyclically shifted identity matrices. By composing a parity-check matrix not only with such matrices but also with sums of two cyclically shifted identity matrices and with zero matrices, one can increase the minimum distance while keeping the same regularity. Specifically, whereas for (3, 4)-regular codes in the first class the best minimum distance is 24, the best minimum distance in the second class is 32. We give examples of codes that achieve these bounds.
二项上正则拟环LDPC码
在过去的研究中,一些作者考虑了拟循环LDPC码,其奇偶校验矩阵中的循环矩阵是循环移位的单位矩阵。通过用这样的矩阵组成一个奇偶校验矩阵,也可以用两个循环移位的单位矩阵和和组成一个零矩阵组成一个奇偶校验矩阵,可以在保持相同正则性的情况下增加最小距离。具体而言,对于(3,4)-正则码,第一类的最佳最小距离为24,第二类的最佳最小距离为32。我们给出了实现这些界限的代码示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信