Lecture Notes

M. Knepley, M. Adams, G. Gorman, David Ham, Patrick M. Farrell, Michael Lange
{"title":"Lecture Notes","authors":"M. Knepley, M. Adams, G. Gorman, David Ham, Patrick M. Farrell, Michael Lange","doi":"10.12987/9780300185812-012","DOIUrl":null,"url":null,"abstract":"It is VERY hard to compute homotopy groups. We want to put as much algebraic structure as possible in order to make computation easier. You can’t add maps in HoTop but you can in Spectra (i.e. Spectra is an Ab-category). The motivation to go to S−Alg = HoS then becomes that you want an abelian category We want to study the ring-like objects that arise in this category. “Ring-like” means ring-object, i.e. using the lens of category theory. They have no points, so you can’t do traditional algebra. To measure complexity of these we’ll use dimension.","PeriodicalId":401418,"journal":{"name":"The Extreme of the Middle","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Extreme of the Middle","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12987/9780300185812-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is VERY hard to compute homotopy groups. We want to put as much algebraic structure as possible in order to make computation easier. You can’t add maps in HoTop but you can in Spectra (i.e. Spectra is an Ab-category). The motivation to go to S−Alg = HoS then becomes that you want an abelian category We want to study the ring-like objects that arise in this category. “Ring-like” means ring-object, i.e. using the lens of category theory. They have no points, so you can’t do traditional algebra. To measure complexity of these we’ll use dimension.
课堂讲稿
计算同伦群是非常困难的。我们想要尽可能多地使用代数结构来简化计算。你不能在HoTop中添加地图,但你可以在Spectra中添加地图(即Spectra是ab类)。使用S - Alg = HoS的动机变成了你想要一个阿贝尔范畴,我们想要研究在这个范畴中出现的环状物体。“Ring-like”是指环状物体,即使用范畴论的透镜。它们没有点,所以你不能做传统的代数。为了衡量这些的复杂性,我们将使用维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信