Competitive Minimax Universal Decoding for Several Ensembles of Random Codes

Yaniv Akirav, N. Merhav
{"title":"Competitive Minimax Universal Decoding for Several Ensembles of Random Codes","authors":"Yaniv Akirav, N. Merhav","doi":"10.1109/EEEI.2006.321148","DOIUrl":null,"url":null,"abstract":"Universally achievable error exponents pertaining to certain families of channels (most notably, discrete memoryless channels (DMCs)), and various ensembles of random codes, are studied by combining the competitive minimax approach, proposed by Feder and Merhav, and Gallager's techniques for the analysis of error exponents. In particular, we derive a single¿letter expression for a lower bound to the largest, universally achievable fraction ¿ of the optimum error exponent pertaining to the optimum ML decoding. To demonstrate the tightness of this lower bound, we show that ¿ = 1, for the binary symmetric channel (BSC), when the random coding distribution is uniform over: (i) all codes (of a given rate), and (ii) all linear codes, in agreement with well¿known results. We also show that ¿ = 1 for the uniform ensemble of systematic linear codes, and for that of time¿varying convolutional codes in the bit-error¿rate sense. For the latter case, we also show how the corresponding universal decoder can be efficiently implemented using a slightly modified version of the Viterbi algorithm which employs two trellises.","PeriodicalId":142814,"journal":{"name":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2006.321148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Universally achievable error exponents pertaining to certain families of channels (most notably, discrete memoryless channels (DMCs)), and various ensembles of random codes, are studied by combining the competitive minimax approach, proposed by Feder and Merhav, and Gallager's techniques for the analysis of error exponents. In particular, we derive a single¿letter expression for a lower bound to the largest, universally achievable fraction ¿ of the optimum error exponent pertaining to the optimum ML decoding. To demonstrate the tightness of this lower bound, we show that ¿ = 1, for the binary symmetric channel (BSC), when the random coding distribution is uniform over: (i) all codes (of a given rate), and (ii) all linear codes, in agreement with well¿known results. We also show that ¿ = 1 for the uniform ensemble of systematic linear codes, and for that of time¿varying convolutional codes in the bit-error¿rate sense. For the latter case, we also show how the corresponding universal decoder can be efficiently implemented using a slightly modified version of the Viterbi algorithm which employs two trellises.
几种随机码集成的竞争极大极小通用译码
通过结合Feder和Merhav提出的竞争极小极大方法和Gallager的误差指数分析技术,研究了与某些信道(最值得注意的是离散无记忆信道(DMCs))和各种随机代码集成相关的普遍可实现的误差指数。特别地,我们导出了与最佳ML解码相关的最佳误差指数的最大,普遍可实现的分数的下界的单个字母表达式。为了证明这个下界的紧密性,我们证明了当随机编码分布在:(i)所有码(给定速率)和(ii)所有线性码上均匀时,二进制对称信道(BSC)的¿= 1,与众所周知的结果一致。我们还证明了系统线性码的一致集合和时变卷积码在误码率意义上的一致集合的¿= 1。对于后一种情况,我们还展示了如何使用使用两个网格的Viterbi算法的稍微修改版本有效地实现相应的通用解码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信