Neural Networks Based Fractional Pixel Motion Estimation for HEVC

Ehab M. Ibrahim, Emad Badry, A. Abdelsalam, I. Abdalla, M. Sayed, Hossam Shalaby
{"title":"Neural Networks Based Fractional Pixel Motion Estimation for HEVC","authors":"Ehab M. Ibrahim, Emad Badry, A. Abdelsalam, I. Abdalla, M. Sayed, Hossam Shalaby","doi":"10.1109/ISM.2018.00027","DOIUrl":null,"url":null,"abstract":"High Efficiency Video Coding (HEVC) provides more compression than its predecessors. One of the modules that contributes to higher compression rates is the Motion Estimation module, which consists of Integer and Fractional pixel motion estimation. The Fractional Motion Estimation (FME) process performs interpolations to find sample values at fractional-pixel locations, which can be computationally demanding. In this paper, we propose an interpolation-free method for FME based on Artificial Neural Networks (ANNs). Our proposed method is implemented in HEVC reference software (HM-16.9). According to our results, ANNs can accomplish FME task with an average increase of 2.6% in BDRate and an average reduction of 0.09 dB in BD-PSNR.","PeriodicalId":308698,"journal":{"name":"2018 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

High Efficiency Video Coding (HEVC) provides more compression than its predecessors. One of the modules that contributes to higher compression rates is the Motion Estimation module, which consists of Integer and Fractional pixel motion estimation. The Fractional Motion Estimation (FME) process performs interpolations to find sample values at fractional-pixel locations, which can be computationally demanding. In this paper, we propose an interpolation-free method for FME based on Artificial Neural Networks (ANNs). Our proposed method is implemented in HEVC reference software (HM-16.9). According to our results, ANNs can accomplish FME task with an average increase of 2.6% in BDRate and an average reduction of 0.09 dB in BD-PSNR.
基于神经网络的HEVC分数像素运动估计
高效视频编码(HEVC)提供比其前身更多的压缩。其中一个有助于提高压缩率的模块是运动估计模块,它由整数和分数像素运动估计组成。分数运动估计(FME)过程执行插值以在分数像素位置找到样本值,这可能对计算要求很高。在本文中,我们提出了一种基于人工神经网络(ann)的无插值FME方法。我们提出的方法在HEVC参考软件(HM-16.9)中实现。结果表明,人工神经网络在完成FME任务时,平均提高了2.6%的brate,平均降低了0.09 dB的BD-PSNR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信