A remark on ultrahyperelliptic surfaces

Mitsuru Ozawa
{"title":"A remark on ultrahyperelliptic surfaces","authors":"Mitsuru Ozawa","doi":"10.2996/KMJ/1138845443","DOIUrl":null,"url":null,"abstract":"and every an is a simple zero of g(z) and s=0 or 1. Hiromi and Mutδ [1] proved the following result: Assume there exists a nontrivial analytic mapping φ from R into S. Then p=n-r, where r is the order of g(z) and n is an integer. The aim of the present paper is to prove the following THEOREM. If S is an ultrahyperelliptic surface of non-zero finite order into which there is a non-trivial analytic mapping from an ultrahyperelliptic surface R of finite order and with P(7?)=4, then the order of S is a half of an integer. 2. Proof of theorem. For our purpose we need our previous result in [4], which asserts the existence of two functions h(z) and f(z) such that f(z) is meromorphic in |2|<oo and h(z) is a polynomial of degree n in the present situation [1] satisfying","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138845443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

and every an is a simple zero of g(z) and s=0 or 1. Hiromi and Mutδ [1] proved the following result: Assume there exists a nontrivial analytic mapping φ from R into S. Then p=n-r, where r is the order of g(z) and n is an integer. The aim of the present paper is to prove the following THEOREM. If S is an ultrahyperelliptic surface of non-zero finite order into which there is a non-trivial analytic mapping from an ultrahyperelliptic surface R of finite order and with P(7?)=4, then the order of S is a half of an integer. 2. Proof of theorem. For our purpose we need our previous result in [4], which asserts the existence of two functions h(z) and f(z) such that f(z) is meromorphic in |2|
关于超椭圆曲面的评述
每个an都是g(z)的一个简单的0 s=0或1。Hiromi和Mutδ[1]证明了以下结果:假设存在一个从R到s的非平凡解析映射φ,则p=n- R,其中R为g(z)的阶,n为整数。本文的目的是证明下列定理。如果S是一个非零有限阶超椭圆曲面,其中存在一个有限阶超椭圆曲面R的非平凡解析映射,且P(7?)=4,则S的阶为整数的二分之一。2. 定理的证明。为了我们的目的,我们需要之前在[4]中的结果,该结果断言了两个函数h(z)和f(z)的存在性,使得f(z)在|| < 0的情况下是亚纯的,并且h(z)是满足当前情况[1]的n次多项式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信