Técnicas para resolução de equações Diofantinas lineares

Egidio Filho, M. Rodrigues, Orlando Eduardo Ferri
{"title":"Técnicas para resolução de equações Diofantinas lineares","authors":"Egidio Filho, M. Rodrigues, Orlando Eduardo Ferri","doi":"10.21711/2319023x2022/pmo101","DOIUrl":null,"url":null,"abstract":"Different mathematical strategies can be used to solve the same problem and it is salutary that the student experiences multiple techniques for facing problem situations, thus understanding that mathematics is dynamic. Based on this premise, this paper brings a study of linear Diophantine equations presenting three resolution strategies, in which two of them have in essence the theory of the greatest common divisor between two integers and the other deals basically with successive divisions.","PeriodicalId":274953,"journal":{"name":"Revista Professor de Matemática On line","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Professor de Matemática On line","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21711/2319023x2022/pmo101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Different mathematical strategies can be used to solve the same problem and it is salutary that the student experiences multiple techniques for facing problem situations, thus understanding that mathematics is dynamic. Based on this premise, this paper brings a study of linear Diophantine equations presenting three resolution strategies, in which two of them have in essence the theory of the greatest common divisor between two integers and the other deals basically with successive divisions.
求解线性丢番图方程的技术
不同的数学策略可以用来解决同样的问题,学生在面对问题的情况下体验多种技巧是有益的,从而理解数学是动态的。在此前提下,本文研究了具有三种解决策略的线性丢梵图方程,其中两种策略实质上是两个整数之间的最大公约数理论,另一种策略基本上是连续除法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信