Computable Lower Bounds for Deterministic Parameter Estimation

É. Chaumette, J. Galy, F. Vincent, P. Larzabal
{"title":"Computable Lower Bounds for Deterministic Parameter Estimation","authors":"É. Chaumette, J. Galy, F. Vincent, P. Larzabal","doi":"10.1109/CAMSAP.2007.4497960","DOIUrl":null,"url":null,"abstract":"This paper is primarily tutorial in nature and presents a simple approach (norm minimization under linear constraints) for deriving computable lower bounds on the MSE of deterministic parameter estimators with a clear interpretation of the bounds. We also address the issue of lower bounds tightness in comparison with the MSE of ML estimators and their ability to predict the SNR threshold region. Last, as many practical estimation problems must be regarded as joint detection-estimation problems, we remind that the estimation performance must be conditional on detection performance, leading to the open problem of the fundamental limits of the joint detection-estimation performance.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is primarily tutorial in nature and presents a simple approach (norm minimization under linear constraints) for deriving computable lower bounds on the MSE of deterministic parameter estimators with a clear interpretation of the bounds. We also address the issue of lower bounds tightness in comparison with the MSE of ML estimators and their ability to predict the SNR threshold region. Last, as many practical estimation problems must be regarded as joint detection-estimation problems, we remind that the estimation performance must be conditional on detection performance, leading to the open problem of the fundamental limits of the joint detection-estimation performance.
确定性参数估计的可计算下界
本文主要是教程性质,并提出了一种简单的方法(线性约束下的范数最小化),用于推导确定性参数估计量的MSE的可计算下界,并对边界进行了清晰的解释。与ML估计器的MSE相比,我们还解决了下限紧密性问题及其预测信噪比阈值区域的能力。最后,由于许多实际估计问题必须被视为联合检测-估计问题,我们提醒估计性能必须以检测性能为条件,从而导致联合检测-估计性能基本限制的开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信