Covariance edges matrix of geometric elements

Blachere Florian, Borouchaki Houman
{"title":"Covariance edges matrix of geometric elements","authors":"Blachere Florian, Borouchaki Houman","doi":"10.17352/amp.000088","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new matrix associated with polygons and polyhedrons, namely the covariance edges matrix. We show that, for a regular polygon or polyhedron the corresponding matrix is proportional to the identity of size two or three. Based on this fact, we propose, as an application, several algebraic shape quality measures for convex polygons or polyhedrons. Furthermore, this matrix may be related to the metric of a simplex. Future studies will be devoted to the definition of the covariance edges matrix for higher elements and real applications to mesh optimisation.","PeriodicalId":430514,"journal":{"name":"Annals of Mathematics and Physics","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17352/amp.000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new matrix associated with polygons and polyhedrons, namely the covariance edges matrix. We show that, for a regular polygon or polyhedron the corresponding matrix is proportional to the identity of size two or three. Based on this fact, we propose, as an application, several algebraic shape quality measures for convex polygons or polyhedrons. Furthermore, this matrix may be related to the metric of a simplex. Future studies will be devoted to the definition of the covariance edges matrix for higher elements and real applications to mesh optimisation.
几何元素的协方差边矩阵
本文引入了一种新的多边形与多面体相关联的矩阵,即协方差边矩阵。我们证明,对于正多边形或多面体,相应的矩阵与大小为2或3的恒等式成正比。基于这一事实,我们提出了凸多边形或多面体的几种代数形状质量测度作为应用。更进一步,这个矩阵可能与单纯形的度规有关。未来的研究将致力于更高元素的协方差边矩阵的定义和网格优化的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信