Efficient Privacy-Preserving k-Nearest Neighbor Search

Yinian Qi, M. Atallah
{"title":"Efficient Privacy-Preserving k-Nearest Neighbor Search","authors":"Yinian Qi, M. Atallah","doi":"10.1109/ICDCS.2008.79","DOIUrl":null,"url":null,"abstract":"We give efficient protocols for secure and private k-nearest neighbor (k-NN) search, when the data is distributed between two parties who want to cooperatively compute the answers without revealing to each other their private data. Our protocol for the single-step k-NN search is provably secure and has linear computation and communication complexity. Previous work on this problem had a quadratic complexity, and also leaked information about the parties' inputs. We adapt our techniquesto also solve the general multi-step k-NN search, and describe a specific embodiment of it for the case of sequence data. The protocols and correctness proofs can be extended to suit other privacy-preserving data mining tasks, such as classification and outlier detection.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

Abstract

We give efficient protocols for secure and private k-nearest neighbor (k-NN) search, when the data is distributed between two parties who want to cooperatively compute the answers without revealing to each other their private data. Our protocol for the single-step k-NN search is provably secure and has linear computation and communication complexity. Previous work on this problem had a quadratic complexity, and also leaked information about the parties' inputs. We adapt our techniquesto also solve the general multi-step k-NN search, and describe a specific embodiment of it for the case of sequence data. The protocols and correctness proofs can be extended to suit other privacy-preserving data mining tasks, such as classification and outlier detection.
高效保隐私k近邻搜索
当数据分布在双方之间时,我们给出了安全和私有的k-最近邻(k-NN)搜索的有效协议,双方希望在不泄露彼此私有数据的情况下合作计算答案。我们的单步k-NN搜索协议是安全的,并且具有线性计算和通信复杂度。之前对这个问题的研究具有二次复杂度,并且还泄露了各方输入的信息。我们将我们的技术应用于一般的多步k-NN搜索,并描述了序列数据的具体体现。协议和正确性证明可以扩展到其他保护隐私的数据挖掘任务,如分类和离群值检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信