A multicriteria genetic algorithm to analyze microarray data

Mohamed Khabzaoui, Clarisse Dhaenens, E. Talbi
{"title":"A multicriteria genetic algorithm to analyze microarray data","authors":"Mohamed Khabzaoui, Clarisse Dhaenens, E. Talbi","doi":"10.1109/CEC.2004.1331124","DOIUrl":null,"url":null,"abstract":"Knowledge discovery from DNA microarray data has become an important research area for biologists. Association rules is an important task of knowledge discovery that can be applied to the analysis of gene expression in order to identify patterns of genes and regulatory network. Association rules discovery may be modeled as an optimization problem. We propose a multicriteria model for association rules problem and present a genetic algorithm designed to deal with association rules on DNA microarray data, in order to obtain associations between genes. Hence, we expose the main features of the proposed genetic algorithm. We emphasize on specificities for the association rule problem (encoding, mutation and crossover operators) and on its multicriteria aspects. Results are given for real datasets.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Knowledge discovery from DNA microarray data has become an important research area for biologists. Association rules is an important task of knowledge discovery that can be applied to the analysis of gene expression in order to identify patterns of genes and regulatory network. Association rules discovery may be modeled as an optimization problem. We propose a multicriteria model for association rules problem and present a genetic algorithm designed to deal with association rules on DNA microarray data, in order to obtain associations between genes. Hence, we expose the main features of the proposed genetic algorithm. We emphasize on specificities for the association rule problem (encoding, mutation and crossover operators) and on its multicriteria aspects. Results are given for real datasets.
一种多标准遗传算法分析微阵列数据
从DNA微阵列数据中发现知识已成为生物学家的重要研究领域。关联规则是一项重要的知识发现任务,可以应用于基因表达分析,从而识别基因和调控网络的模式。关联规则发现可以建模为一个优化问题。我们提出了一个多准则的关联规则问题模型,并提出了一种遗传算法来处理DNA微阵列数据上的关联规则,以获得基因之间的关联。因此,我们揭示了所提出的遗传算法的主要特征。我们强调了关联规则问题(编码、变异和交叉操作符)及其多标准方面的特殊性。给出了实际数据集的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信