Parameter Tuning and Confidence Limits of Malware Clustering

Houtan Faridi, Srivathsan Srinivasagopalan, Rakesh M. Verma
{"title":"Parameter Tuning and Confidence Limits of Malware Clustering","authors":"Houtan Faridi, Srivathsan Srinivasagopalan, Rakesh M. Verma","doi":"10.1145/3292006.3302385","DOIUrl":null,"url":null,"abstract":"The growing number of new malware and the sophisticated obfuscation techniques used by malware authors are causing major problems in identifying, managing, and releasing anti-malware products to the consumers. Clustering malware variants based on their behavior has the potential to ease this problem of scale and conveniently lend itself to better, faster, and efficient prioritization of malware analysis. In this paper, we cluster real-world malware and expand on commonly used algorithms through fine grained testing. Results of top performing algorithms are discussed.","PeriodicalId":246233,"journal":{"name":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292006.3302385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The growing number of new malware and the sophisticated obfuscation techniques used by malware authors are causing major problems in identifying, managing, and releasing anti-malware products to the consumers. Clustering malware variants based on their behavior has the potential to ease this problem of scale and conveniently lend itself to better, faster, and efficient prioritization of malware analysis. In this paper, we cluster real-world malware and expand on commonly used algorithms through fine grained testing. Results of top performing algorithms are discussed.
恶意软件聚类的参数调优和置信度
越来越多的新恶意软件和恶意软件作者使用的复杂混淆技术在识别、管理和向消费者发布反恶意软件产品方面造成了重大问题。基于行为对恶意软件变体进行聚类有可能缓解这种规模问题,并方便地为恶意软件分析提供更好、更快、更有效的优先级排序。在本文中,我们对真实世界的恶意软件进行了聚类,并通过细粒度测试扩展了常用的算法。讨论了性能最好的算法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信