P. Jaworski, K. Krzempek, P. Kozioł, G. Dudzik, Dakun Wu, F. Yu, M. Liao, K. Abramski
{"title":"Antiresonant hollow-core fiber-assisted mid-IR hydrocarbons gas sensor","authors":"P. Jaworski, K. Krzempek, P. Kozioł, G. Dudzik, Dakun Wu, F. Yu, M. Liao, K. Abramski","doi":"10.1117/12.2594488","DOIUrl":null,"url":null,"abstract":"In this work, we present simultaneous and sensitive detection of methane and ethane at ~3.34 µm using a 15-meteres long self-fabricated silica ARHCF and Wavelength Modulation Spectroscopy technique. The ARHCF was filled with a mixture of 10 ppmv and 20 ppmv ethane and methane, respectively via air-tight housings placed at both fiber end-facets. The gas molecules were excited using a self-built continuous wave Difference Frequency Generation source which radiation was coupled into the gas-filled ARHCF. The ARHCF-aided gas sensor reached a minimum detection limit at parts-per-billion by volume level, confirming the suitability of the proposed approach for trace-gas sensing.","PeriodicalId":143146,"journal":{"name":"Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XV","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present simultaneous and sensitive detection of methane and ethane at ~3.34 µm using a 15-meteres long self-fabricated silica ARHCF and Wavelength Modulation Spectroscopy technique. The ARHCF was filled with a mixture of 10 ppmv and 20 ppmv ethane and methane, respectively via air-tight housings placed at both fiber end-facets. The gas molecules were excited using a self-built continuous wave Difference Frequency Generation source which radiation was coupled into the gas-filled ARHCF. The ARHCF-aided gas sensor reached a minimum detection limit at parts-per-billion by volume level, confirming the suitability of the proposed approach for trace-gas sensing.