Ambiguity Function Based Radar Waveform Classification and Unsupervised Adaptation Using Deep CNN Models

Pavel Itkin, N. Levanon
{"title":"Ambiguity Function Based Radar Waveform Classification and Unsupervised Adaptation Using Deep CNN Models","authors":"Pavel Itkin, N. Levanon","doi":"10.1109/COMCAS44984.2019.8958242","DOIUrl":null,"url":null,"abstract":"We present a robust generalized approach to phase and frequency modulated LPI Radar waveform classification and adaptation, inspired by deep convolutional neural architectures. We use a complex Ambiguity Function matrix as a pre-processing step, following which, a waveform classification, or adaptation to unlabeled reference target domains, is performed. We test our method on a wide range of tasks, datasets, and different signal distributions. Our method surpasses the state-of-the-art performance on classification problems on multi-encoding, multi-feature datasets, in diverse and challenging conditions. Our novel approach to an unlabeled Radar waveform adaptation reveals impressive classification improvements to domain shifted unlabeled signals.","PeriodicalId":276613,"journal":{"name":"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMCAS44984.2019.8958242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a robust generalized approach to phase and frequency modulated LPI Radar waveform classification and adaptation, inspired by deep convolutional neural architectures. We use a complex Ambiguity Function matrix as a pre-processing step, following which, a waveform classification, or adaptation to unlabeled reference target domains, is performed. We test our method on a wide range of tasks, datasets, and different signal distributions. Our method surpasses the state-of-the-art performance on classification problems on multi-encoding, multi-feature datasets, in diverse and challenging conditions. Our novel approach to an unlabeled Radar waveform adaptation reveals impressive classification improvements to domain shifted unlabeled signals.
基于模糊函数的雷达波形分类和深度CNN模型的无监督自适应
受深度卷积神经结构的启发,我们提出了一种鲁棒的相位和频率调制LPI雷达波形分类和自适应方法。我们使用复杂的模糊函数矩阵作为预处理步骤,然后执行波形分类或适应未标记的参考目标域。我们在广泛的任务、数据集和不同的信号分布上测试了我们的方法。我们的方法在多编码、多特征数据集、多样化和挑战性条件下的分类问题上超越了最先进的性能。我们对无标记雷达波形自适应的新方法显示了对域移无标记信号的令人印象深刻的分类改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信