Readout for kinetic-inductance-detector-based submillimeter radio astronomy

R. Duan, Musicos Team, Xinxin Zhang, C. Niu, Di Li
{"title":"Readout for kinetic-inductance-detector-based submillimeter radio astronomy","authors":"R. Duan, Musicos Team, Xinxin Zhang, C. Niu, Di Li","doi":"10.1117/12.2576399","DOIUrl":null,"url":null,"abstract":"A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. \nThe number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. \nThis paper presents the development of all aspects of the readout electronics for a KID-based instrument, which enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this paper had been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a instrument for the Caltech Submillimeter Observatory (CSO) between 2013 and 2015.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2576399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This paper presents the development of all aspects of the readout electronics for a KID-based instrument, which enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this paper had been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a instrument for the Caltech Submillimeter Observatory (CSO) between 2013 and 2015.
基于动力电感探测器的亚毫米射电天文学读数
大量重要的科学信息包含在亚毫米和远红外(FIR)波长的天文数据中,包括关于尘埃星系、星系团和恒星形成区域的信息;然而,由于技术上的困难,这些波长是天文学中探索最少的领域之一。在过去的20年里,人们在研制亚毫米波和毫米波天文仪器和望远镜方面付出了相当大的努力。探测器的数量是这类仪器的一个重要特性,也是当前研究的主题。未来的望远镜将需要多达数十万个探测器来满足视场、扫描速度和分辨率方面的必要要求。使用动态电感检测器(KID)技术的可复用检测器的一个好处是大像素计数。本文介绍了基于kid的仪器的读出电子器件的各个方面的发展,该仪器使迄今为止在亚毫米/毫米波长成像阵列中实现的最大探测器数量之一:总共2304个探测器。本文所介绍的工作已在2013年至2015年期间在加州理工学院亚毫米天文台(CSO)的多波长亚毫米电感相机(MUSIC)上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信