Evolutionary latent space search for driving human portrait generation

Benjamín Machín, S. Nesmachnow, J. Toutouh
{"title":"Evolutionary latent space search for driving human portrait generation","authors":"Benjamín Machín, S. Nesmachnow, J. Toutouh","doi":"10.48550/arXiv.2204.11887","DOIUrl":null,"url":null,"abstract":"This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.11887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.
驱动人类肖像生成的进化潜在空间搜索
本文提出了一种基于生成对抗网络潜在空间探索的合成人体肖像生成的进化方法。这个想法是产生与给定目标肖像非常相似的不同人脸图像。该方法使用StyleGAN2进行人像生成,使用FaceNet进行人脸相似性评估。进化搜索是基于对StyleGAN2的实编码潜在空间的探索。合成图像和真实图像的主要结果表明,所提出的方法产生的解准确多样,代表了真实的人体肖像。本文的研究有助于提高人脸识别系统的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信