Word Segmentation Algorithms with Lexical Resources for Hashtag Classification

Credell Simeon, Howard J. Hamilton, Robert J. Hilderman
{"title":"Word Segmentation Algorithms with Lexical Resources for Hashtag Classification","authors":"Credell Simeon, Howard J. Hamilton, Robert J. Hilderman","doi":"10.1109/DSAA.2016.80","DOIUrl":null,"url":null,"abstract":"We present a novel method for classifying hashtag types. Specifically, we apply word segmentation algorithms and lexical resources in order to classify two types of hashtags: those with sentiment information and those without. However, the complex structure of hashtags increases the difficulty of identifying sentiment information. In order to solve this problem, we segment hashtags into smaller semantic units using word segmentation algorithms in conjunction with lexical resources to classify hashtag types. Our experimental results demonstrate that our approach achieves a 14% increase in accuracy over baseline methods for identifying hashtags with sentiment information. Additionally, we achieve over 94% recall using this hashtag type for the subjectivity detection of tweets.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"83 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a novel method for classifying hashtag types. Specifically, we apply word segmentation algorithms and lexical resources in order to classify two types of hashtags: those with sentiment information and those without. However, the complex structure of hashtags increases the difficulty of identifying sentiment information. In order to solve this problem, we segment hashtags into smaller semantic units using word segmentation algorithms in conjunction with lexical resources to classify hashtag types. Our experimental results demonstrate that our approach achieves a 14% increase in accuracy over baseline methods for identifying hashtags with sentiment information. Additionally, we achieve over 94% recall using this hashtag type for the subjectivity detection of tweets.
基于词汇资源的标签分类分词算法
提出了一种新的标签类型分类方法。具体来说,我们应用分词算法和词汇资源来对两种类型的标签进行分类:有情感信息的标签和没有情感信息的标签。然而,标签复杂的结构增加了情感信息识别的难度。为了解决这个问题,我们使用分词算法结合词汇资源将标签划分为更小的语义单元,对标签类型进行分类。我们的实验结果表明,在识别带有情感信息的标签时,我们的方法比基线方法的准确率提高了14%。此外,使用这种标签类型进行推文主观性检测,我们实现了超过94%的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信