Spatial-Temporal Graph-Based AU Relationship Learning for Facial Action Unit Detection

Zihan Wang, Siyang Song, Cheng Luo, Yuzhi Zhou, Shiling Wu, Weicheng Xie, Linlin Shen
{"title":"Spatial-Temporal Graph-Based AU Relationship Learning for Facial Action Unit Detection","authors":"Zihan Wang, Siyang Song, Cheng Luo, Yuzhi Zhou, Shiling Wu, Weicheng Xie, Linlin Shen","doi":"10.1109/CVPRW59228.2023.00627","DOIUrl":null,"url":null,"abstract":"This paper presents our Facial Action Units (AUs) detection submission to the fifth Affective Behavior Analysis in-the-wild Competition (ABAW). Our approach consists of three main modules: (i) a pre-trained facial representation encoder which produce a strong facial representation from each input face image in the input sequence; (ii) an AU-specific feature generator that specifically learns a set of AU features from each facial representation; and (iii) a spatio-temporal graph learning module that constructs a spatio-temporal graph representation. This graph representation describes AUs contained in all frames and predicts the occurrence of each AU based on both the modeled spatial information within the corresponding face and the learned temporal dynamics among frames. The experimental results show that our approach outperformed the baseline and the spatio-temporal graph representation learning allows our model to generate the best results among all ablated systems. Our model ranks at the 4th place in the AU recognition track at the 5th ABAW Competition. Our code is publicly available at https://github.com/wzh125/ABAW-5.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents our Facial Action Units (AUs) detection submission to the fifth Affective Behavior Analysis in-the-wild Competition (ABAW). Our approach consists of three main modules: (i) a pre-trained facial representation encoder which produce a strong facial representation from each input face image in the input sequence; (ii) an AU-specific feature generator that specifically learns a set of AU features from each facial representation; and (iii) a spatio-temporal graph learning module that constructs a spatio-temporal graph representation. This graph representation describes AUs contained in all frames and predicts the occurrence of each AU based on both the modeled spatial information within the corresponding face and the learned temporal dynamics among frames. The experimental results show that our approach outperformed the baseline and the spatio-temporal graph representation learning allows our model to generate the best results among all ablated systems. Our model ranks at the 4th place in the AU recognition track at the 5th ABAW Competition. Our code is publicly available at https://github.com/wzh125/ABAW-5.
基于时空图的AU关系学习人脸动作单元检测
本文介绍了我们的面部动作单位(AUs)检测提交给第五届情感行为分析野外比赛(ABAW)。我们的方法由三个主要模块组成:(i)一个预训练的面部表征编码器,它从输入序列中的每个输入面部图像产生强面部表征;(ii)一个特定于AU的特征生成器,专门从每个面部表示中学习一组AU特征;(iii)构建时空图表示的时空图学习模块。这种图形表示描述了所有帧中包含的AU,并根据相应人脸内的建模空间信息和帧间学习的时间动态来预测每个AU的发生。实验结果表明,我们的方法优于基线,时空图表示学习使我们的模型在所有消融系统中产生最好的结果。我们的模型在第5届ABAW竞赛中获得AU识别赛道第四名。我们的代码可以在https://github.com/wzh125/ABAW-5上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信