Optimal Differentially Private Algorithms for k-Means Clustering

Zhiyi Huang, Jinyan Liu
{"title":"Optimal Differentially Private Algorithms for k-Means Clustering","authors":"Zhiyi Huang, Jinyan Liu","doi":"10.1145/3196959.3196977","DOIUrl":null,"url":null,"abstract":"We consider privacy-preserving k-means clustering. For the objective of minimizing the Wasserstein distance between the output and the optimal solution, we show that there is a polynomial-time (ε,δ)-differentially private algorithm which, for any sufficiently large Φ2 well-separated datasets, outputs k centers that are within Wasserstein distance Ø(Φ2) from the optimal. This result improves the previous bounds by removing the dependence on ε, number of centers k, and dimension d. Further, we prove a matching lower bound that no (ε, δ)-differentially private algorithm can guarantee Wasserstein distance less than Ømega (Φ2) and, thus, our positive result is optimal up to a constant factor. For minimizing the k-means objective when the dimension d is bounded, we propose a polynomial-time private local search algorithm that outputs an αn-additive approximation when the size of the dataset is at least ~Ø (k3/2 · d · ε-1 · poly(α-1)).","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3196977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We consider privacy-preserving k-means clustering. For the objective of minimizing the Wasserstein distance between the output and the optimal solution, we show that there is a polynomial-time (ε,δ)-differentially private algorithm which, for any sufficiently large Φ2 well-separated datasets, outputs k centers that are within Wasserstein distance Ø(Φ2) from the optimal. This result improves the previous bounds by removing the dependence on ε, number of centers k, and dimension d. Further, we prove a matching lower bound that no (ε, δ)-differentially private algorithm can guarantee Wasserstein distance less than Ømega (Φ2) and, thus, our positive result is optimal up to a constant factor. For minimizing the k-means objective when the dimension d is bounded, we propose a polynomial-time private local search algorithm that outputs an αn-additive approximation when the size of the dataset is at least ~Ø (k3/2 · d · ε-1 · poly(α-1)).
k-均值聚类的最优差分私有算法
我们考虑保护隐私的k-均值聚类。为了最小化输出和最优解之间的Wasserstein距离,我们证明了存在一个多项式时间(ε,δ)差分私有算法,对于任何足够大的Φ2分离良好的数据集,输出k个在Wasserstein距离Ø(Φ2)内的中心。该结果通过消除对ε,中心数k和维数d的依赖来改进先前的边界。此外,我们证明了一个匹配的下界,即没有(ε, δ)-差分私有算法可以保证Wasserstein距离小于Ømega (Φ2),因此,我们的正结果是最优的,直到一个常数因子。为了在维数d有界时最小化k-means目标,我们提出了一种多项式时间私有局部搜索算法,当数据集的大小至少为~Ø (k3/2·d·ε-1·poly(α-1))时,该算法输出αn-可加性逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信