Using support vector machines for stability region determination

Z.H. Zhang, C. Ong, S. Keerthi, E.G. Gilbert
{"title":"Using support vector machines for stability region determination","authors":"Z.H. Zhang, C. Ong, S. Keerthi, E.G. Gilbert","doi":"10.1109/ICONIP.2002.1198194","DOIUrl":null,"url":null,"abstract":"The paper presents a new approach to determine the stability region for constrained dynamical systems. Our approach employs support vector machines (SVMs), a promising new tool for pattern recognition, to this field. By this application, the determination of stability region becomes a typical two-class hard margin pattern recognition problem, rather than the characterizations of the boundaries of such stability regions. In the underlying analysis, a program has been developed to generate critical points in the state space and train them by SVMs. Some examples are given to show the obtained estimates are close approximations of the exact stability region.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a new approach to determine the stability region for constrained dynamical systems. Our approach employs support vector machines (SVMs), a promising new tool for pattern recognition, to this field. By this application, the determination of stability region becomes a typical two-class hard margin pattern recognition problem, rather than the characterizations of the boundaries of such stability regions. In the underlying analysis, a program has been developed to generate critical points in the state space and train them by SVMs. Some examples are given to show the obtained estimates are close approximations of the exact stability region.
利用支持向量机确定稳定区域
本文提出了一种确定约束动力系统稳定区域的新方法。我们的方法采用了支持向量机(svm),这是一种很有前途的模式识别新工具。通过这种应用,稳定区域的确定成为一个典型的两类硬边界模式识别问题,而不是这类稳定区域边界的表征。在基础分析中,开发了一个程序来生成状态空间中的临界点,并通过支持向量机对其进行训练。给出了一些算例,表明所得到的估计是精确稳定区域的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信