Multiple Scenario-based Model Predictive Control with Decision Time Limit Determination of Scenario Selection

Y. Iino, Y. Hayashi
{"title":"Multiple Scenario-based Model Predictive Control with Decision Time Limit Determination of Scenario Selection","authors":"Y. Iino, Y. Hayashi","doi":"10.23919/SICE.2019.8859962","DOIUrl":null,"url":null,"abstract":"In the Cyber Physical System or the Digital Twin, the control strategy generates multiple scenarios in the cyber world with optimization of future models and objective functions, and these scenarios are utilized to determine an optimal strategy, which is then applied to the physical world. In these procedures, the decision-making to select and fix a future scenario and its time limit are important factors. In this study, considering the scenario decision time limit, a procrastination strategy is introduced and formulated as a new model predictive control framework. It is to postpone the decision and preserve the freedom of scenario choice for the future. In the proposed method, the concept of a common admissible set for control trajectory and its branch point are introduced. A simple numerical example and an application to an energy management problem are shown to illustrate and verify the effectiveness of the proposed method.","PeriodicalId":147772,"journal":{"name":"2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SICE.2019.8859962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the Cyber Physical System or the Digital Twin, the control strategy generates multiple scenarios in the cyber world with optimization of future models and objective functions, and these scenarios are utilized to determine an optimal strategy, which is then applied to the physical world. In these procedures, the decision-making to select and fix a future scenario and its time limit are important factors. In this study, considering the scenario decision time limit, a procrastination strategy is introduced and formulated as a new model predictive control framework. It is to postpone the decision and preserve the freedom of scenario choice for the future. In the proposed method, the concept of a common admissible set for control trajectory and its branch point are introduced. A simple numerical example and an application to an energy management problem are shown to illustrate and verify the effectiveness of the proposed method.
基于多场景的模型预测控制与场景选择的决策时限确定
在网络物理系统或数字孪生中,控制策略通过优化未来模型和目标函数在网络世界中生成多个场景,并利用这些场景确定最优策略,然后将其应用于物理世界。在这些程序中,选择和确定未来情景的决策及其时间限制是重要因素。本文在考虑情景决策时间限制的基础上,引入了拖延策略作为一种新的模型预测控制框架。这是为了推迟决策,保留未来情景选择的自由。在该方法中,引入了控制轨迹的公共容许集及其分支点的概念。通过一个简单的数值算例和一个能源管理问题的应用,说明并验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信