Moore's Law Past 32nm: Future Challenges in Device Scaling

K. Kuhn
{"title":"Moore's Law Past 32nm: Future Challenges in Device Scaling","authors":"K. Kuhn","doi":"10.1109/IWCE.2009.5091124","DOIUrl":null,"url":null,"abstract":"This paper explores the challenges facing process generations past the 32 nm technology node and speculates on what new solutions will be needed. The challenges facing planar and multiple-gate devices are compared and contrasted. Resistance and capacitance challenges are reviewed in relation to past history and on-going research. Key enhancers such as high-k metal-gate (HiK-MG), substrate and channel orientation, as well as NMOS and PMOS stress are discussed in relation to the challenges of the coming transistor generations.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

This paper explores the challenges facing process generations past the 32 nm technology node and speculates on what new solutions will be needed. The challenges facing planar and multiple-gate devices are compared and contrasted. Resistance and capacitance challenges are reviewed in relation to past history and on-going research. Key enhancers such as high-k metal-gate (HiK-MG), substrate and channel orientation, as well as NMOS and PMOS stress are discussed in relation to the challenges of the coming transistor generations.
超越32nm的摩尔定律:器件扩展的未来挑战
本文探讨了32纳米技术节点之后的制程所面临的挑战,并推测了需要哪些新的解决方案。比较了平面和多栅极器件所面临的挑战。电阻和电容的挑战,回顾了过去的历史和正在进行的研究。讨论了高k金属栅极(HiK-MG)、衬底和沟道取向以及NMOS和PMOS应力等关键增强剂与未来晶体管一代的挑战有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信