Compressed Sensing-Based Angle Estimation for Noncircular Sources in MIMO Radar

Chen Guang, Liu Qi
{"title":"Compressed Sensing-Based Angle Estimation for Noncircular Sources in MIMO Radar","authors":"Chen Guang, Liu Qi","doi":"10.1109/IMCCC.2014.17","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of applying compressed sensing (CS) theory to angle estimation for noncircular sources in monostatic multiple-input multiple output (MIMO) radar, and propose an angle estimation algorithm based on extended matrix compressed sensing. Firstly, a reduced-dimensional matrix is employed to transform the data matrix into a low dimensional one. Then the properties of noncircular signals are utilized to construct an extended matrix from the received data. Finally, the dictionary can be conducted to apply Orthogonal Matching Pursuit (OMP) for angle estimation. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and reduced-dimension ESPRIT (RD-ESPRIT) algorithm, and the proposed method requires no knowledge of the noise. The simulation results verify the effectiveness of the algorithm.","PeriodicalId":152074,"journal":{"name":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2014.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we consider the problem of applying compressed sensing (CS) theory to angle estimation for noncircular sources in monostatic multiple-input multiple output (MIMO) radar, and propose an angle estimation algorithm based on extended matrix compressed sensing. Firstly, a reduced-dimensional matrix is employed to transform the data matrix into a low dimensional one. Then the properties of noncircular signals are utilized to construct an extended matrix from the received data. Finally, the dictionary can be conducted to apply Orthogonal Matching Pursuit (OMP) for angle estimation. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and reduced-dimension ESPRIT (RD-ESPRIT) algorithm, and the proposed method requires no knowledge of the noise. The simulation results verify the effectiveness of the algorithm.
基于压缩感知的MIMO雷达非圆源角度估计
本文研究了将压缩感知理论应用于单站多输入多输出(MIMO)雷达中非圆源的角度估计问题,提出了一种基于扩展矩阵压缩感知的角度估计算法。首先,利用降维矩阵将数据矩阵变换为低维矩阵。然后利用非圆信号的特性,从接收到的数据构造扩展矩阵。最后,将字典应用于正交匹配追踪(OMP)进行角度估计。该方法的角度估计性能优于旋转不变性技术(ESPRIT)算法和降维ESPRIT (RD-ESPRIT)算法,且不需要知道噪声。仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信