Learning Optimal Compact Codebook for Efficient Object Categorization

Teng Li, Tao Mei, In-So Kweon
{"title":"Learning Optimal Compact Codebook for Efficient Object Categorization","authors":"Teng Li, Tao Mei, In-So Kweon","doi":"10.1109/WACV.2008.4544027","DOIUrl":null,"url":null,"abstract":"Representation of images using the distribution of local features on a visual codebook is an effective method for object categorization. Typically, discriminative capability of the codebook can lead to a better performance. However, conventional methods usually use clustering algorithms to learn codebooks without considering this. This paper presents a novel approach of learning optimal compact codebooks by selecting a subset of discriminative codes from a large codebook. Firstly, the Gaussian models of object categories based on a single code are learned from the distribution of local features within each image. Then two discriminative criteria, i.e. likelihood ratio and Fisher, are introduced to evaluate how each code contributes to the categorization. We evaluate the optimal codebooks constructed by these two criteria on Caltech-4 dataset, and report superior performance of object categorization compared with traditional K-means method with the same size of codebook.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Representation of images using the distribution of local features on a visual codebook is an effective method for object categorization. Typically, discriminative capability of the codebook can lead to a better performance. However, conventional methods usually use clustering algorithms to learn codebooks without considering this. This paper presents a novel approach of learning optimal compact codebooks by selecting a subset of discriminative codes from a large codebook. Firstly, the Gaussian models of object categories based on a single code are learned from the distribution of local features within each image. Then two discriminative criteria, i.e. likelihood ratio and Fisher, are introduced to evaluate how each code contributes to the categorization. We evaluate the optimal codebooks constructed by these two criteria on Caltech-4 dataset, and report superior performance of object categorization compared with traditional K-means method with the same size of codebook.
学习高效对象分类的最优紧凑码本
利用视觉码本上的局部特征分布来表示图像是一种有效的对象分类方法。通常,码本的判别能力可以带来更好的性能。然而,传统的方法通常使用聚类算法来学习码本,而不考虑这一点。本文提出了一种学习最优紧码本的新方法,即从一个大码本中选择一个判别码子集。首先,从每幅图像的局部特征分布中学习基于单个代码的目标类别高斯模型;然后引入两个判别标准,即似然比和费雪,来评估每个代码对分类的贡献。我们在Caltech-4数据集上对这两种标准构建的最优码本进行了评价,并报告了在相同码本大小的情况下,与传统的K-means方法相比,目标分类的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信