{"title":"Unsupervised Object Re-identification via Instances Correlation Loss","authors":"Qing Tang, K. Jo","doi":"10.1109/INDIN51773.2022.9976073","DOIUrl":null,"url":null,"abstract":"This paper studies the fully unsupervised object re-identification (re-ID) problem which can learn re-ID without any human-annotated labeled data. Recent works show that self-supervised momentum contrastive learning is an effective method for unsupervised object re-ID, but they neglect to optimize one important component - the similarity relationships among instances. Previous works focus on enforcing instance-to-centroid learning, which does not fully utilize the inter-instances information. Thus, we propose an Instances Correlation Loss (ICL) to enforce instance-to-instance learning in each training iteration. Experimental results show that the proposed ICL effectively boost the performance, which demonstrates that learning strategy is also a central importance to unsupervised re-ID task. Extensive experiments are performed on three mainstream person re-ID datasets and one vehicle re-ID dataset.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the fully unsupervised object re-identification (re-ID) problem which can learn re-ID without any human-annotated labeled data. Recent works show that self-supervised momentum contrastive learning is an effective method for unsupervised object re-ID, but they neglect to optimize one important component - the similarity relationships among instances. Previous works focus on enforcing instance-to-centroid learning, which does not fully utilize the inter-instances information. Thus, we propose an Instances Correlation Loss (ICL) to enforce instance-to-instance learning in each training iteration. Experimental results show that the proposed ICL effectively boost the performance, which demonstrates that learning strategy is also a central importance to unsupervised re-ID task. Extensive experiments are performed on three mainstream person re-ID datasets and one vehicle re-ID dataset.