Dynamics of differential entropy maximization process via the Speed Gradient principle

D. Shalymov, Alexander L. Fradkov
{"title":"Dynamics of differential entropy maximization process via the Speed Gradient principle","authors":"D. Shalymov, Alexander L. Fradkov","doi":"10.1109/MED.2015.7158787","DOIUrl":null,"url":null,"abstract":"Dynamics of non-stationary processes that follow the MaxEnt principle for differential entropy is considered. A set of equations describing the dynamics of probability density function (pdf) for such processes is proposed. Equations are derived based on the Speed-Gradient principle originated in the control theory. The uniqueness of the limit pdf and asymptotic convergence of pdf are examined under the mass and energy conservation constraints.","PeriodicalId":316642,"journal":{"name":"2015 23rd Mediterranean Conference on Control and Automation (MED)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2015.7158787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamics of non-stationary processes that follow the MaxEnt principle for differential entropy is considered. A set of equations describing the dynamics of probability density function (pdf) for such processes is proposed. Equations are derived based on the Speed-Gradient principle originated in the control theory. The uniqueness of the limit pdf and asymptotic convergence of pdf are examined under the mass and energy conservation constraints.
基于速度梯度原理的微分熵最大化过程动力学
考虑了微分熵的MaxEnt原理下的非平稳过程的动力学。本文提出了一组描述这类过程的概率密度函数动力学的方程。根据控制理论中的速度梯度原理,推导出相应的方程。在质量守恒约束和能量守恒约束下,研究了极限方程的唯一性和渐近收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信