Scalable and Modular Online Data Processing for Ultrafast Computed Tomography Using CUDA Pipelines

Tobias Frust, G. Juckeland, A. Bieberle
{"title":"Scalable and Modular Online Data Processing for Ultrafast Computed Tomography Using CUDA Pipelines","authors":"Tobias Frust, G. Juckeland, A. Bieberle","doi":"10.5555/3018859.3018861","DOIUrl":null,"url":null,"abstract":"For investigations of rapidly moving structures in opaque technical devices ultrafast electron beam X-ray computed tomography (CT) scanners are available at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Currently, measurement data must be initially downloaded after each CT scan from the scanner to a data processing machine. Afterwards, cross-sectional images are reconstructed. This limits the application fields of the scanners. For online observations and even automated process control of scanned objects a new modular data processing tool is presented consisting of user-definable pipeline stages that work independently together in a so called data processing pipeline that can keep up with the CT scanner's frame rate of up to 8 kHz. The data processing stages are arbitrarily programmable and combinable and are connected by a fast custom memory pool to optimize data transfer processes. As a result, this processing structure is not limited to CT application only. In order to achieve highest processing performances for the electron beam X-ray CT scanners all relevant data processing steps are individually implemented in separate stages using graphic processing units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on two different high-end GPUs (Tesla K20c, GeForce GTX 1080) offer a slice image reconstruction performance that is well-suited for online application.","PeriodicalId":229382,"journal":{"name":"2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3018859.3018861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For investigations of rapidly moving structures in opaque technical devices ultrafast electron beam X-ray computed tomography (CT) scanners are available at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Currently, measurement data must be initially downloaded after each CT scan from the scanner to a data processing machine. Afterwards, cross-sectional images are reconstructed. This limits the application fields of the scanners. For online observations and even automated process control of scanned objects a new modular data processing tool is presented consisting of user-definable pipeline stages that work independently together in a so called data processing pipeline that can keep up with the CT scanner's frame rate of up to 8 kHz. The data processing stages are arbitrarily programmable and combinable and are connected by a fast custom memory pool to optimize data transfer processes. As a result, this processing structure is not limited to CT application only. In order to achieve highest processing performances for the electron beam X-ray CT scanners all relevant data processing steps are individually implemented in separate stages using graphic processing units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on two different high-end GPUs (Tesla K20c, GeForce GTX 1080) offer a slice image reconstruction performance that is well-suited for online application.
使用CUDA管道的超快速计算机断层扫描的可扩展和模块化在线数据处理
为了研究不透明技术设备中快速移动的结构,亥姆霍兹-德累斯顿-罗森多夫中心(HZDR)提供了超快电子束x射线计算机断层扫描(CT)扫描仪。目前,测量数据必须在每次CT扫描后从扫描仪下载到数据处理机。然后,重建横截面图像。这限制了扫描仪的应用领域。对于在线观察甚至扫描对象的自动化过程控制,提出了一种新的模块化数据处理工具,该工具由用户可定义的流水线阶段组成,这些阶段在所谓的数据处理流水线中独立工作,可以跟上CT扫描仪高达8 kHz的帧率。数据处理阶段是任意可编程和可组合的,并通过快速自定义内存池连接,以优化数据传输过程。因此,这种处理结构不仅限于CT的应用。为了实现电子束x射线CT扫描仪的最高处理性能,所有相关的数据处理步骤都使用图形处理单元(gpu)和NVIDIA的CUDA编程语言在不同的阶段单独实现。在两种不同的高端gpu (Tesla K20c, GeForce GTX 1080)上进行数据处理性能测试,提供了非常适合在线应用的切片图像重建性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信