System State Variable Discovery Counter Example

Brad Thompson
{"title":"System State Variable Discovery Counter Example","authors":"Brad Thompson","doi":"10.1109/CCTA.2018.8511379","DOIUrl":null,"url":null,"abstract":"The stability of an existing non-linear system model of a Dubins vehicle is investigated. The discovery of the system state variables and their dynamics from simulation data is attempted, using machine learning (ML) techniques. The results show that there is at least one case in which system state-space discovery through a ML approach is unsuccessful. Technology which relies upon state abstraction from inferential learning techniques may be vulnerable to failure if the cases are not well understood.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The stability of an existing non-linear system model of a Dubins vehicle is investigated. The discovery of the system state variables and their dynamics from simulation data is attempted, using machine learning (ML) techniques. The results show that there is at least one case in which system state-space discovery through a ML approach is unsuccessful. Technology which relies upon state abstraction from inferential learning techniques may be vulnerable to failure if the cases are not well understood.
系统状态变量发现计数器示例
研究了已有的Dubins车辆非线性系统模型的稳定性。尝试使用机器学习(ML)技术从仿真数据中发现系统状态变量及其动态。结果表明,至少有一种情况下,通过ML方法发现系统状态空间是不成功的。如果不能很好地理解案例,依赖于从推理学习技术中提取状态的技术可能容易失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信