A Graph-Theoretic Embedding-Based Approach for Rumor Detection in Twitter

M. Abulaish, N. kumari, Mohd Fazil, Basanta Singh
{"title":"A Graph-Theoretic Embedding-Based Approach for Rumor Detection in Twitter","authors":"M. Abulaish, N. kumari, Mohd Fazil, Basanta Singh","doi":"10.1145/3350546.3352569","DOIUrl":null,"url":null,"abstract":"In this paper, we present a graph-theoretic embedding-based approach to model user-generated contents in online social media for rumor detection. Starting with a small set of seed rumor words of four different lexical categories, we generate a words co-occurrence graph and apply centrality-based analysis to identify prominent rumor characterizing words. Thereafter, word embedding is applied to represent each category of seed words as numeric vectors and to train three different classification models for rumor detection. The performance of the proposed approach is empirically evaluated over two versions of a benchmark dataset. The proposed approach is also compared with one of the state-of-the-art methods for rumor detection and performs significantly better. CCS CONCEPTS • Information systems $\\rightarrow$ Data analytics; • Human-centered computing $\\rightarrow$ Social network analysis; • Computing methodologies $\\rightarrow$ Supervised learning by classification.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we present a graph-theoretic embedding-based approach to model user-generated contents in online social media for rumor detection. Starting with a small set of seed rumor words of four different lexical categories, we generate a words co-occurrence graph and apply centrality-based analysis to identify prominent rumor characterizing words. Thereafter, word embedding is applied to represent each category of seed words as numeric vectors and to train three different classification models for rumor detection. The performance of the proposed approach is empirically evaluated over two versions of a benchmark dataset. The proposed approach is also compared with one of the state-of-the-art methods for rumor detection and performs significantly better. CCS CONCEPTS • Information systems $\rightarrow$ Data analytics; • Human-centered computing $\rightarrow$ Social network analysis; • Computing methodologies $\rightarrow$ Supervised learning by classification.
基于图论嵌入的Twitter谣言检测方法
在本文中,我们提出了一种基于图论嵌入的方法来对在线社交媒体中的用户生成内容进行建模,用于谣言检测。从四种不同词汇类别的一小部分种子谣言词开始,我们生成了一个词共现图,并应用基于中心性的分析来识别突出的谣言特征词。然后,应用词嵌入将种子词的每个类别表示为数字向量,并训练三种不同的分类模型用于谣言检测。在两个版本的基准数据集上对所提出的方法的性能进行了经验评估。该方法还与一种最先进的谣言检测方法进行了比较,结果明显更好。CCS CONCEPTS•信息系统$\右箭头$数据分析;•以人为本的计算$\右箭头$社会网络分析;•计算方法$\右箭头$通过分类进行监督学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信