Topology Reconstruction of a Resistive Network with Limited Boundary Measurements

S. Biradar, D.U Patil
{"title":"Topology Reconstruction of a Resistive Network with Limited Boundary Measurements","authors":"S. Biradar, D.U Patil","doi":"10.1109/ICC56513.2022.10093371","DOIUrl":null,"url":null,"abstract":"We consider the problem of reconstructing all possible topologies of the circular planar passive-resistive network with only $1\\Omega$ resistances, housed inside a black box, with limited boundary measurements. The reconstruction problem is an inverse problem and, in general, has no unique solution. The limitedly available boundary measurements are used to construct a partially known resistance distance matrix. The partially known resistance distance matrix is then related to the unknown Laplacian matrix, resulting in many nonlinear multivariate polynomials. A method is proposed to reconstruct the network topology and edge resistor values simultaneously using the Gröbner basis. Numerical simulation establishes the effectiveness of the proposed strategy.","PeriodicalId":101654,"journal":{"name":"2022 Eighth Indian Control Conference (ICC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eighth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC56513.2022.10093371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of reconstructing all possible topologies of the circular planar passive-resistive network with only $1\Omega$ resistances, housed inside a black box, with limited boundary measurements. The reconstruction problem is an inverse problem and, in general, has no unique solution. The limitedly available boundary measurements are used to construct a partially known resistance distance matrix. The partially known resistance distance matrix is then related to the unknown Laplacian matrix, resulting in many nonlinear multivariate polynomials. A method is proposed to reconstruct the network topology and edge resistor values simultaneously using the Gröbner basis. Numerical simulation establishes the effectiveness of the proposed strategy.
有限边界电阻网络的拓扑重构
我们考虑的问题是重建圆形平面无源电阻网络的所有可能的拓扑结构,只有$1\Omega$电阻,安置在一个黑盒子里,边界测量有限。重构问题是一个逆问题,通常没有唯一解。利用有限的边界测量值来构造部分已知的电阻距离矩阵。然后将部分已知的电阻距离矩阵与未知的拉普拉斯矩阵相关联,得到许多非线性多元多项式。提出了一种利用Gröbner基同时重构网络拓扑和边缘电阻值的方法。数值仿真验证了该策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信