R. Li, N. D. Stuyck, S. Kubicek, J. Jussot, B. Chan, F. Mohiyaddin, A. Elsayed, M. Shehata, G. Simion, C. Godfrin, Y. Canvel, T. Ivanov, L. Goux, B. Govoreanu, I. Radu
{"title":"A flexible 300 mm integrated Si MOS platform for electron- and hole-spin qubits exploration","authors":"R. Li, N. D. Stuyck, S. Kubicek, J. Jussot, B. Chan, F. Mohiyaddin, A. Elsayed, M. Shehata, G. Simion, C. Godfrin, Y. Canvel, T. Ivanov, L. Goux, B. Govoreanu, I. Radu","doi":"10.1109/IEDM13553.2020.9371956","DOIUrl":null,"url":null,"abstract":"We report on a flexible 300 mm process that optimally combines optical and electron beam lithography to fabricate silicon spin qubits. It enables on-the-fly layout design modifications while allowing devices with either n- or p-type ohmic implants, a pitch smaller than 100 nm, and uniform critical dimensions down to 30 nm with a standard deviation ~ 1.6 nm. Various n- and p-type qubits are characterized in a dilution refrigerator at temperatures ~ 10 mK. Electrical measurements demonstrate well-defined quantum dots, tunable tunnel couplings, and coherent spin control, which are essential requirements for the implementation of a large-scale quantum processor.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9371956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We report on a flexible 300 mm process that optimally combines optical and electron beam lithography to fabricate silicon spin qubits. It enables on-the-fly layout design modifications while allowing devices with either n- or p-type ohmic implants, a pitch smaller than 100 nm, and uniform critical dimensions down to 30 nm with a standard deviation ~ 1.6 nm. Various n- and p-type qubits are characterized in a dilution refrigerator at temperatures ~ 10 mK. Electrical measurements demonstrate well-defined quantum dots, tunable tunnel couplings, and coherent spin control, which are essential requirements for the implementation of a large-scale quantum processor.