Multistage SFM: Revisiting Incremental Structure from Motion

R. Shah, A. Deshpande, P J Narayanan
{"title":"Multistage SFM: Revisiting Incremental Structure from Motion","authors":"R. Shah, A. Deshpande, P J Narayanan","doi":"10.1109/3DV.2014.95","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new multistage approach for SfM reconstruction of a single component. Our method begins with building a coarse 3D reconstruction using high-scale features of given images. This step uses only a fraction of features and is fast. We enrich the model in stages by localizing remaining images to it and matching and triangulating remaining features. Unlike traditional incremental SfM, localization and triangulation steps in our approach are made efficient and embarrassingly parallel using geometry of the coarse model. The coarse model allows us to use 3D-2D correspondences based direct localization techniques to register remaining images. We further utilize the geometry of the coarse model to reduce the pair-wise image matching effort as well as to perform fast guided feature matching for majority of features. Our method produces similar quality models as compared to incremental SfM methods while being notably fast and parallel. Our algorithm can reconstruct a 1000 images dataset in 15 hours using a single core, in about 2 hours using 8 cores and in a few minutes by utilizing full parallelism of about 200 cores.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"13 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we present a new multistage approach for SfM reconstruction of a single component. Our method begins with building a coarse 3D reconstruction using high-scale features of given images. This step uses only a fraction of features and is fast. We enrich the model in stages by localizing remaining images to it and matching and triangulating remaining features. Unlike traditional incremental SfM, localization and triangulation steps in our approach are made efficient and embarrassingly parallel using geometry of the coarse model. The coarse model allows us to use 3D-2D correspondences based direct localization techniques to register remaining images. We further utilize the geometry of the coarse model to reduce the pair-wise image matching effort as well as to perform fast guided feature matching for majority of features. Our method produces similar quality models as compared to incremental SfM methods while being notably fast and parallel. Our algorithm can reconstruct a 1000 images dataset in 15 hours using a single core, in about 2 hours using 8 cores and in a few minutes by utilizing full parallelism of about 200 cores.
多阶段SFM:从运动中重新审视增量结构
在本文中,我们提出了一种新的多阶段的单分量SfM重建方法。我们的方法首先使用给定图像的高尺度特征构建粗糙的3D重建。这一步只使用了一小部分特征,而且速度很快。我们通过将剩余图像定位到模型中,并对剩余特征进行匹配和三角化,逐步丰富模型。与传统的增量SfM不同,我们的方法中的定位和三角测量步骤是高效的,并且使用粗糙模型的几何结构令人尴尬地并行。粗模型允许我们使用基于3D-2D对应的直接定位技术来注册剩余的图像。我们进一步利用粗糙模型的几何特性来减少成对图像匹配的工作量,并对大多数特征进行快速引导特征匹配。与增量SfM方法相比,我们的方法产生了类似质量的模型,同时显着快速和并行。我们的算法可以在15小时内使用单核重建1000个图像数据集,在2小时内使用8个核,在几分钟内利用大约200个核的完全并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信