GPA - A Tool for Fluid Scalability Analysis of Massively Parallel Systems

Anton Stefanek, R. A. Hayden, Jeremy T. Bradley
{"title":"GPA - A Tool for Fluid Scalability Analysis of Massively Parallel Systems","authors":"Anton Stefanek, R. A. Hayden, Jeremy T. Bradley","doi":"10.1109/QEST.2011.26","DOIUrl":null,"url":null,"abstract":"Recent ordinary differential equation (ODE) based techniques allow efficient analysis of Markovian population models with extremely large state spaces. In most cases of realistic scale, they provide the only alternative to stochastic simulation. Moreover, numerical solution of the ODEs is cheaper computationally than simulation by orders of magnitude. We present the Grouped PEPA Analyser (GPA) tool with new functionality to exploit computationally inexpensive fluid analysis techniques to allow the exploration of large numbers of system configurations in models with large state spaces. GPA provides an efficient implementation of the fluid analysis techniques for models described in a stochastic process algebra. It implements recently developed extensions allowing specifications of complex reward measures using combinations of state based, rate accumulated and impulse rewards. Combined with the ability to efficiently capture various passage time metrics, GPA can be used to solve optimisation problems with a reward objective function under different service level agreement type constraints.","PeriodicalId":252235,"journal":{"name":"2011 Eighth International Conference on Quantitative Evaluation of SysTems","volume":"2 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Conference on Quantitative Evaluation of SysTems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2011.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Recent ordinary differential equation (ODE) based techniques allow efficient analysis of Markovian population models with extremely large state spaces. In most cases of realistic scale, they provide the only alternative to stochastic simulation. Moreover, numerical solution of the ODEs is cheaper computationally than simulation by orders of magnitude. We present the Grouped PEPA Analyser (GPA) tool with new functionality to exploit computationally inexpensive fluid analysis techniques to allow the exploration of large numbers of system configurations in models with large state spaces. GPA provides an efficient implementation of the fluid analysis techniques for models described in a stochastic process algebra. It implements recently developed extensions allowing specifications of complex reward measures using combinations of state based, rate accumulated and impulse rewards. Combined with the ability to efficiently capture various passage time metrics, GPA can be used to solve optimisation problems with a reward objective function under different service level agreement type constraints.
大规模并行系统的流体可扩展性分析工具
最近基于常微分方程(ODE)的技术允许对具有极大状态空间的马尔可夫人口模型进行有效分析。在大多数实际规模的情况下,它们提供了随机模拟的唯一替代方案。此外,数值解的计算成本比模拟低几个数量级。我们提出了分组PEPA分析器(GPA)工具,该工具具有新的功能,可以利用计算廉价的流体分析技术来探索具有大状态空间的模型中的大量系统配置。GPA为随机过程代数中描述的模型提供了流体分析技术的有效实现。它实现了最近开发的扩展,允许使用基于状态的组合、速率累积和脉冲奖励来规范复杂的奖励措施。结合有效捕获各种通过时间指标的能力,GPA可用于解决在不同服务级别协议类型约束下具有奖励目标函数的优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信