{"title":"Solving a Two-stage Supply Chain Network Design Problem with Fixed Costs by a Hybrid Genetic Algorithm","authors":"Ovidiu Cosma, P. Pop, C. Sabo","doi":"10.1093/JIGPAL/JZAB007","DOIUrl":null,"url":null,"abstract":"In this paper we investigate a particular two-stage supply chain network design problem with fixed costs. In order to solve this complex optimization problem, we propose an efficient hybrid algorithm, which was obtained by incorporating a linear programming optimization problem within the framework of a genetic algorithm. In addition, we integrated within our proposed algorithm a powerful local search procedure able to perform a fine tuning of the global search. We evaluate our proposed solution approach on a set of large size instances. The achieved computational results prove the efficiency of our hybrid genetic algorithm in providing high-quality solutions within reasonable running-times and its superiority against other existing methods from the literature.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZAB007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we investigate a particular two-stage supply chain network design problem with fixed costs. In order to solve this complex optimization problem, we propose an efficient hybrid algorithm, which was obtained by incorporating a linear programming optimization problem within the framework of a genetic algorithm. In addition, we integrated within our proposed algorithm a powerful local search procedure able to perform a fine tuning of the global search. We evaluate our proposed solution approach on a set of large size instances. The achieved computational results prove the efficiency of our hybrid genetic algorithm in providing high-quality solutions within reasonable running-times and its superiority against other existing methods from the literature.