Forecasting Monthly Maximum Temperatures in Kerbala Using Seasonal ARIMA Models.

Adnan K. Shathir, L. Saleh, S. A. Majeed
{"title":"Forecasting Monthly Maximum Temperatures in Kerbala Using Seasonal ARIMA Models.","authors":"Adnan K. Shathir, L. Saleh, S. A. Majeed","doi":"10.29196/JUBES.V27I2.2341","DOIUrl":null,"url":null,"abstract":"Weather forecasting is an important issue in meteorology and scientific research.In this research, the Seasonal Auto Regressive.Integrated Moving Average.(ARIMA) model which is based on Box-Jenkins method was adopted to build the forecasting model. The max. Monthly temperature data for Kerbala city for the period (Jan.1980 to Dec.2016) was employed. The autocorrelation and partial autocorrelation functions for time series data from years 1980 to 2015 were used to identify the most appropriate orders of the ARIMA models. The validation test of these models were performed using the monthly max. Temperature of the year 2016. To calculate the model's accuracy and compare among them, statistical criteria such as MAE, RMSE, MAPE, and R2 were used. The model (2, 1, 2) × (1, 1, 1)12 gave the most accurate results and used to forecast the monthly max. Temperature for the period (2017 to 2021) for study region.","PeriodicalId":311103,"journal":{"name":"Journal of University of Babylon for Engineering Sciences","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/JUBES.V27I2.2341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Weather forecasting is an important issue in meteorology and scientific research.In this research, the Seasonal Auto Regressive.Integrated Moving Average.(ARIMA) model which is based on Box-Jenkins method was adopted to build the forecasting model. The max. Monthly temperature data for Kerbala city for the period (Jan.1980 to Dec.2016) was employed. The autocorrelation and partial autocorrelation functions for time series data from years 1980 to 2015 were used to identify the most appropriate orders of the ARIMA models. The validation test of these models were performed using the monthly max. Temperature of the year 2016. To calculate the model's accuracy and compare among them, statistical criteria such as MAE, RMSE, MAPE, and R2 were used. The model (2, 1, 2) × (1, 1, 1)12 gave the most accurate results and used to forecast the monthly max. Temperature for the period (2017 to 2021) for study region.
利用季节ARIMA模式预测克尔巴拉地区月最高气温。
天气预报是气象学和科学研究中的一个重要问题。在本研究中,季节性自回归。采用基于Box-Jenkins方法的综合移动平均(ARIMA)模型建立预测模型。马克斯。采用1980年1月- 2016年12月克尔巴拉市逐月气温资料。利用1980 ~ 2015年时间序列数据的自相关和偏自相关函数,确定了ARIMA模型的最合适阶数。使用月max对这些模型进行验证检验。2016年气温。为了计算模型的准确性并进行比较,采用了MAE、RMSE、MAPE、R2等统计标准。模型(2,1,2)×(1,1,1)12给出了最准确的结果,并用于预测月最大值。研究区域2017 - 2021年期间的温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信