Comparison of k-NN, SVM, and NN in Pit Pattern Classification of Zoom-Endoscopic Colon Images using Co-Occurrence Histograms

M. Häfner, Alfred Gangl, F. Wrba, K. Thonhauser, Haiko Schmidt, C. Kastinger, A. Uhl, A. Vécsei
{"title":"Comparison of k-NN, SVM, and NN in Pit Pattern Classification of Zoom-Endoscopic Colon Images using Co-Occurrence Histograms","authors":"M. Häfner, Alfred Gangl, F. Wrba, K. Thonhauser, Haiko Schmidt, C. Kastinger, A. Uhl, A. Vécsei","doi":"10.1109/ISPA.2007.4383747","DOIUrl":null,"url":null,"abstract":"Co-occurrence histograms are used as features to classify magnifying endoscope imagery with k-NN, SVM, and NN classifiers. In the k-NN classification case these histograms may improve the classification accuracy of simple ID color histograms up to 10% in the 2 classes case and up to 5% in the 6 classes case. The classification results of SVM and NN classifiers have turned out to be noncompetitive and do not improve the classification result of ID color histograms.","PeriodicalId":112420,"journal":{"name":"2007 5th International Symposium on Image and Signal Processing and Analysis","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2007.4383747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Co-occurrence histograms are used as features to classify magnifying endoscope imagery with k-NN, SVM, and NN classifiers. In the k-NN classification case these histograms may improve the classification accuracy of simple ID color histograms up to 10% in the 2 classes case and up to 5% in the 6 classes case. The classification results of SVM and NN classifiers have turned out to be noncompetitive and do not improve the classification result of ID color histograms.
k-NN、SVM和NN在共现直方图放大内镜结肠图像坑模式分类中的比较
以共现直方图为特征,利用k-NN、SVM和NN分类器对放大内窥镜图像进行分类。在k-NN分类情况下,这些直方图可以提高简单ID颜色直方图的分类精度,在2类情况下可提高10%,在6类情况下可提高5%。支持向量机和神经网络分类器的分类结果是非竞争的,并且不能改善ID颜色直方图的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信