Uploader models for video concept detection

B. Mérialdo, U. Niaz
{"title":"Uploader models for video concept detection","authors":"B. Mérialdo, U. Niaz","doi":"10.1109/CBMI.2014.6849847","DOIUrl":null,"url":null,"abstract":"In video indexing, it has been noticed that a simple uploader model was able to improve the MAP of concept detection in the TRECVID Semantic Concept Indexing (SIN) task. In this paper, we explore this idea further by comparing different types of uploader models and different types of score/rank distribution. We evaluate the performance of these combinations on the best SIN 2012 runs, and explore the impact of their parameters. We observe that the improvement is generally lower for the best runs than for the weaker runs. We also observe that tuning the models for each concept independently produces a much more significant improvement.","PeriodicalId":103056,"journal":{"name":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2014.6849847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In video indexing, it has been noticed that a simple uploader model was able to improve the MAP of concept detection in the TRECVID Semantic Concept Indexing (SIN) task. In this paper, we explore this idea further by comparing different types of uploader models and different types of score/rank distribution. We evaluate the performance of these combinations on the best SIN 2012 runs, and explore the impact of their parameters. We observe that the improvement is generally lower for the best runs than for the weaker runs. We also observe that tuning the models for each concept independently produces a much more significant improvement.
视频概念检测的上传模型
在视频索引中,人们注意到一个简单的上传器模型能够改善TRECVID语义概念索引(Semantic concept indexing, SIN)任务中概念检测的MAP。在本文中,我们通过比较不同类型的上传者模型和不同类型的分数/排名分布来进一步探索这一思想。我们在SIN 2012的最佳运行中评估了这些组合的性能,并探讨了它们的参数的影响。我们观察到,在最好的跑步中,改善程度通常低于较弱的跑步。我们还观察到,为每个概念单独调整模型会产生更显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信