HSLD: a hybrid similarity measure for linked data resources

G. O. M. D. Silva, Paulo Roberto de Souza, F. Durão
{"title":"HSLD: a hybrid similarity measure for linked data resources","authors":"G. O. M. D. Silva, Paulo Roberto de Souza, F. Durão","doi":"10.1504/ijmso.2020.10030003","DOIUrl":null,"url":null,"abstract":"The web of data is a set of deeply linked resources that can be instantly read and understood by both humans and machines. A vast amount of RDF data has been published in freely accessible and interconnected data sets creating the so-called Linked Open Data cloud. Such a huge amount of data available along with the development of semantic web standards has opened up opportunities for the development of semantic applications. However, most of the semantic recommender systems use only the link structure between resources to calculate the similarity between resources. In this paper we propose HSLD, a hybrid similarity measure for Linked Data that exploits information present in RDF literals besides the links between resources. We evaluate the proposed approach in the context of a LOD-based Recommender System using data from DBpedia. Experiment results indicate that HSLD increases the precision of the recommendations in comparison to pure link-based baseline methods.","PeriodicalId":111629,"journal":{"name":"Int. J. Metadata Semant. Ontologies","volume":"17 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Metadata Semant. Ontologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmso.2020.10030003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The web of data is a set of deeply linked resources that can be instantly read and understood by both humans and machines. A vast amount of RDF data has been published in freely accessible and interconnected data sets creating the so-called Linked Open Data cloud. Such a huge amount of data available along with the development of semantic web standards has opened up opportunities for the development of semantic applications. However, most of the semantic recommender systems use only the link structure between resources to calculate the similarity between resources. In this paper we propose HSLD, a hybrid similarity measure for Linked Data that exploits information present in RDF literals besides the links between resources. We evaluate the proposed approach in the context of a LOD-based Recommender System using data from DBpedia. Experiment results indicate that HSLD increases the precision of the recommendations in comparison to pure link-based baseline methods.
HSLD:链接数据资源的混合相似性度量
数据网络是一组深度关联的资源,可以被人类和机器即时读取和理解。大量RDF数据以自由访问和相互连接的数据集的形式发布,创建了所谓的关联开放数据云。随着语义web标准的发展,海量的可用数据为语义应用的开发提供了机会。然而,大多数语义推荐系统仅使用资源之间的链接结构来计算资源之间的相似度。在本文中,我们提出了HSLD,这是一种用于关联数据的混合相似性度量,除了资源之间的链接之外,它还利用RDF文字中存在的信息。我们使用来自DBpedia的数据,在基于lod的推荐系统的背景下评估了所提出的方法。实验结果表明,与纯基于链接的基线方法相比,HSLD提高了推荐的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信