Discovering Hidden Errors from Application Log Traces with Process Mining

M. Cinque, Raffaele Della Corte, A. Pecchia
{"title":"Discovering Hidden Errors from Application Log Traces with Process Mining","authors":"M. Cinque, Raffaele Della Corte, A. Pecchia","doi":"10.1109/EDCC.2019.00034","DOIUrl":null,"url":null,"abstract":"Over the past decades logs have been widely used for detecting and analyzing failures of computer applications. Nevertheless, it is widely accepted by the scientific community that failures might go undetected in the logs. This paper proposes a measurement study with a dataset of 3,794 log traces obtained from normative and failure runs of the Apache web server. We use process mining (i) to infer a model of the normative log behavior, e.g., presence and ordering of messages in the traces, and (ii) to detect failures within arbitrary traces by looking for deviations from the model (conformance checking). Analysis is done with the Integer Linear Programming (ILP) Miner, Inductive Miner and Alpha++ Miner algorithms. Our measurements indicate that, although only around 18% failure traces contain explicit error keywords and phrases, conformance checking allows detecting up to 87% failures at high precision, which means that most of the errors are hidden across the traces.","PeriodicalId":334498,"journal":{"name":"2019 15th European Dependable Computing Conference (EDCC)","volume":"35 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th European Dependable Computing Conference (EDCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCC.2019.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decades logs have been widely used for detecting and analyzing failures of computer applications. Nevertheless, it is widely accepted by the scientific community that failures might go undetected in the logs. This paper proposes a measurement study with a dataset of 3,794 log traces obtained from normative and failure runs of the Apache web server. We use process mining (i) to infer a model of the normative log behavior, e.g., presence and ordering of messages in the traces, and (ii) to detect failures within arbitrary traces by looking for deviations from the model (conformance checking). Analysis is done with the Integer Linear Programming (ILP) Miner, Inductive Miner and Alpha++ Miner algorithms. Our measurements indicate that, although only around 18% failure traces contain explicit error keywords and phrases, conformance checking allows detecting up to 87% failures at high precision, which means that most of the errors are hidden across the traces.
使用过程挖掘从应用程序日志跟踪中发现隐藏错误
在过去的几十年里,日志被广泛用于检测和分析计算机应用程序的故障。然而,科学界普遍认为,故障可能不会在日志中被发现。本文提出了一项测量研究,该研究使用了3794个日志跟踪数据集,这些数据集来自Apache web服务器的正常运行和故障运行。我们使用流程挖掘(i)来推断规范日志行为的模型,例如,跟踪中消息的存在和顺序,以及(ii)通过寻找与模型的偏差(一致性检查)来检测任意跟踪中的故障。使用整数线性规划(ILP) Miner、电感Miner和Alpha++ Miner算法进行分析。我们的测量表明,虽然只有大约18%的故障轨迹包含明确的错误关键字和短语,但一致性检查允许以高精度检测高达87%的故障,这意味着大多数错误隐藏在轨迹中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信