Balance Search Particle Swarm Optimization

M. K. Khandelwal, Neetu Sharma
{"title":"Balance Search Particle Swarm Optimization","authors":"M. K. Khandelwal, Neetu Sharma","doi":"10.1109/ISCON57294.2023.10112115","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization approach is a swarm based procedure, used to search global optimum solution in a search domain. The Basic PSO algorithm show premature convergence to find global optimum solution (best fitness value of particle). The fitness function value may be maximum or minimum value depends on application. Relative search behaviour of PSO particles are to be guided according to the fitness value of gbest particle. This paper proposed an approach which increases global exploration and local exploitation ability of basic PSO algorithm using angular relation between solutions. The proposed approach named as Balance Search Particle Swarm optimization (BS-PSO) model search space as a concentric circular search environment. The BS-PSO algorithm maintains optimum search behavior, from inception of the search procedure to wider search space. Initially BS-PSO approach provide a controlled and directed procedure to find optimal solution using search exploitation and later on it increase exploration ability of the search procedure to capture global optimum solution. In this manner BS-PSO approach maintain a perfect diversity among solution and prevent PSO algorithm to trap in local optima and premature convergence situation.","PeriodicalId":280183,"journal":{"name":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","volume":"104 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON57294.2023.10112115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particle swarm optimization approach is a swarm based procedure, used to search global optimum solution in a search domain. The Basic PSO algorithm show premature convergence to find global optimum solution (best fitness value of particle). The fitness function value may be maximum or minimum value depends on application. Relative search behaviour of PSO particles are to be guided according to the fitness value of gbest particle. This paper proposed an approach which increases global exploration and local exploitation ability of basic PSO algorithm using angular relation between solutions. The proposed approach named as Balance Search Particle Swarm optimization (BS-PSO) model search space as a concentric circular search environment. The BS-PSO algorithm maintains optimum search behavior, from inception of the search procedure to wider search space. Initially BS-PSO approach provide a controlled and directed procedure to find optimal solution using search exploitation and later on it increase exploration ability of the search procedure to capture global optimum solution. In this manner BS-PSO approach maintain a perfect diversity among solution and prevent PSO algorithm to trap in local optima and premature convergence situation.
平衡搜索粒子群优化
粒子群优化方法是一种基于群体的方法,用于在一个搜索域内搜索全局最优解。基本粒子群算法在寻找全局最优解(粒子的最佳适应度值)时表现出早熟的收敛性。适应度函数值可以是最大值或最小值,取决于应用。根据最佳粒子的适应度值来指导粒子群的相对搜索行为。提出了一种利用解之间的角关系提高基本粒子群算法全局探索和局部开发能力的方法。提出的平衡搜索粒子群优化(BS-PSO)模型将空间作为同心圆形搜索环境进行搜索。从搜索过程开始到更大的搜索空间,BS-PSO算法都保持最优搜索行为。该方法最初提供了一种控制和定向的过程,利用搜索开发来寻找最优解,后来增加了搜索过程的探索能力,以获取全局最优解。这种方法保持了粒子群算法解之间的完美多样性,避免了粒子群算法陷入局部最优和过早收敛的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信