A Paradigm for Safe Adaptation of Collaborating Robots

Emilia Cioroaica, Barbora Buhnova, E. Tomur
{"title":"A Paradigm for Safe Adaptation of Collaborating Robots","authors":"Emilia Cioroaica, Barbora Buhnova, E. Tomur","doi":"10.1145/3524844.3528061","DOIUrl":null,"url":null,"abstract":"The dynamic forces that transit back and forth traditional boundaries of system development have led to the emergence of digital ecosystems. Within these, business gains are achieved through the development of intelligent control that requires a continuous design and runtime co-engineering process endangered by malicious attacks. The possibility of inserting specially crafted faults capable to exploit the nature of unknown evolving intelligent behavior raises the necessity of malicious behavior detection at runtime.Adjusting to the needs and opportunities of fast AI development within digital ecosystems, in this paper, we envision a novel method and framework for runtime predictive evaluation of intelligent robots’ behavior for assuring a cooperative safe adjustment.","PeriodicalId":227173,"journal":{"name":"2022 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524844.3528061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The dynamic forces that transit back and forth traditional boundaries of system development have led to the emergence of digital ecosystems. Within these, business gains are achieved through the development of intelligent control that requires a continuous design and runtime co-engineering process endangered by malicious attacks. The possibility of inserting specially crafted faults capable to exploit the nature of unknown evolving intelligent behavior raises the necessity of malicious behavior detection at runtime.Adjusting to the needs and opportunities of fast AI development within digital ecosystems, in this paper, we envision a novel method and framework for runtime predictive evaluation of intelligent robots’ behavior for assuring a cooperative safe adjustment.
协作机器人的安全适应范式
在系统开发的传统边界之间来回穿梭的动态力量导致了数字生态系统的出现。其中,业务收益是通过智能控制的开发实现的,而智能控制需要持续的设计和运行时协同工程过程,这些过程会受到恶意攻击的威胁。插入能够利用未知进化智能行为本质的特制错误的可能性,提高了在运行时检测恶意行为的必要性。为了适应数字生态系统中快速人工智能发展的需求和机遇,在本文中,我们设想了一种新的方法和框架,用于对智能机器人的行为进行运行时预测评估,以确保合作安全调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信