Camera-odometer calibration and fusion using graph based optimization

Yijia He, Yue Guo, Aixue Ye, Kui Yuan
{"title":"Camera-odometer calibration and fusion using graph based optimization","authors":"Yijia He, Yue Guo, Aixue Ye, Kui Yuan","doi":"10.1109/ROBIO.2017.8324650","DOIUrl":null,"url":null,"abstract":"Monocular visual odometry (vo) estimates the camera motion only up to a scale which is prone to localization failure when the light is changing. The wheel encoders can provide metric information and accurate local localization. Fusing camera information with wheel odometer data is a good way to estimate robot motion. In such methods, calibrating camera-odometer extrinsic parameters and fusing sensor information to perform localization are key problems. We solve these problems by transforming the wheel odometry measurement to the camera frame that can construct a factor-graph edge between every two keyframes. By building factor graph, we can use graph-based optimization technology to estimate cameraodometer extrinsic parameters and fuse sensor information to estimate robot motion. We also derive the covariance matrix of the wheel odometry edges which is important when using graph-based optimization. Simulation experiments are used to validate the extrinsic calibration. For real-world experiments, we use our method to fuse the semi-direct visual odometry (SVO) with wheel encoder data, and the results show the fusion approach is effective.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Monocular visual odometry (vo) estimates the camera motion only up to a scale which is prone to localization failure when the light is changing. The wheel encoders can provide metric information and accurate local localization. Fusing camera information with wheel odometer data is a good way to estimate robot motion. In such methods, calibrating camera-odometer extrinsic parameters and fusing sensor information to perform localization are key problems. We solve these problems by transforming the wheel odometry measurement to the camera frame that can construct a factor-graph edge between every two keyframes. By building factor graph, we can use graph-based optimization technology to estimate cameraodometer extrinsic parameters and fuse sensor information to estimate robot motion. We also derive the covariance matrix of the wheel odometry edges which is important when using graph-based optimization. Simulation experiments are used to validate the extrinsic calibration. For real-world experiments, we use our method to fuse the semi-direct visual odometry (SVO) with wheel encoder data, and the results show the fusion approach is effective.
基于图优化的摄像机-里程表校准和融合
单目视觉测程法(vo)仅在一定范围内估计摄像机的运动,当光线变化时容易出现定位失败。轮式编码器可以提供度量信息和精确的局部定位。将摄像头信息与车轮里程计数据融合是估计机器人运动的好方法。在这些方法中,标定相机里程表外部参数和融合传感器信息进行定位是关键问题。我们通过将车轮里程测量转换到相机帧来解决这些问题,相机帧可以在每两个关键帧之间构造一个因子图边缘。通过构建因子图,利用基于图的优化技术估计相机仪表的外在参数,融合传感器信息估计机器人运动。我们还推导了车轮里程计边的协方差矩阵,这在使用基于图的优化时是很重要的。仿真实验验证了外部标定的正确性。在实际实验中,我们将该方法与车轮编码器数据进行了半直接视觉里程测量(SVO)融合,结果表明融合方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信