Broadening the Bandgaps of Sonic Crystals by Varying Shapes, Sizes and Orientations of the Scatterers

Debasis Panda, A. Mohanty
{"title":"Broadening the Bandgaps of Sonic Crystals by Varying Shapes, Sizes and Orientations of the Scatterers","authors":"Debasis Panda, A. Mohanty","doi":"10.1115/IMECE2018-87398","DOIUrl":null,"url":null,"abstract":"Sonic Crystals are noise barriers wherein the incident sound waves are scattered multiple times by the periodically arranged scatterers placed inside a host fluid. Used as sound attenuators, sonic crystals attenuate sound over frequency bands known as bandgaps. Broadening and lowering the bandgaps is the primary objective of this work. Effect of changing the shape, size and orientations of the scatterers on the band characteristics have been reported here. Different shapes of the scatterers are found to affect the band characteristics of the sonic crystals. Adding local resonance to the scatterers introduce a new attenuation mechanism due to local acoustic resonances. A new type of double circle split-ring resonator is also proposed which use acoustic resonance to produce additional bandgaps. Size and orientation of the scatterers are also found to affect the bandwidth and center frequency of the bandgaps. The band diagram, transmission loss, eigenmodes are computed using finite element method. COMSOL Multiphysics, a commercially available finite element software has been used to implement FEM and model the two-dimensional unit cells and the sonic crystal arrays. Due to the large difference in impedance of the steel scatterer embedded in air, the scatterers are assumed to be sound hard (sound rigid) which imposes a condition where normal component of acceleration is zero.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sonic Crystals are noise barriers wherein the incident sound waves are scattered multiple times by the periodically arranged scatterers placed inside a host fluid. Used as sound attenuators, sonic crystals attenuate sound over frequency bands known as bandgaps. Broadening and lowering the bandgaps is the primary objective of this work. Effect of changing the shape, size and orientations of the scatterers on the band characteristics have been reported here. Different shapes of the scatterers are found to affect the band characteristics of the sonic crystals. Adding local resonance to the scatterers introduce a new attenuation mechanism due to local acoustic resonances. A new type of double circle split-ring resonator is also proposed which use acoustic resonance to produce additional bandgaps. Size and orientation of the scatterers are also found to affect the bandwidth and center frequency of the bandgaps. The band diagram, transmission loss, eigenmodes are computed using finite element method. COMSOL Multiphysics, a commercially available finite element software has been used to implement FEM and model the two-dimensional unit cells and the sonic crystal arrays. Due to the large difference in impedance of the steel scatterer embedded in air, the scatterers are assumed to be sound hard (sound rigid) which imposes a condition where normal component of acceleration is zero.
通过改变散射体的形状、大小和取向来拓宽声波晶体的带隙
声波晶体是噪声屏障,其中入射声波被放置在宿主流体内的周期性排列的散射体多次散射。作为声音衰减器,声音晶体在被称为带隙的频带上衰减声音。拓宽和降低带隙是这项工作的主要目标。本文报道了改变散射体的形状、大小和方向对带特性的影响。发现不同形状的散射体会影响声波晶体的波段特性。在散射体中加入局部共振,引入了一种新的由局部共振引起的衰减机制。提出了一种利用声共振产生附加带隙的新型双圆裂环谐振器。散射体的大小和方向也会影响带隙的带宽和中心频率。用有限元法计算了带图、传输损耗、本征模态。利用商用有限元软件COMSOL Multiphysics对二维单元格和声波晶体阵列进行有限元模拟。由于嵌入空气中的钢散射体的阻抗差异较大,假设散射体为声硬(声刚性),从而施加加速度法向分量为零的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信