Concentrating light in Cu(In,Ga)Se2 solar cells

M. Schmid, G. Yin, Min Song, Shengkai Duan, B. Heidmann, Diego Sancho-Martínez, S. Kämmer, T. Köhler, P. Manley, M. Lux‐Steiner
{"title":"Concentrating light in Cu(In,Ga)Se2 solar cells","authors":"M. Schmid, G. Yin, Min Song, Shengkai Duan, B. Heidmann, Diego Sancho-Martínez, S. Kämmer, T. Köhler, P. Manley, M. Lux‐Steiner","doi":"10.1117/12.2238056","DOIUrl":null,"url":null,"abstract":"Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2238056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Cu(in,Ga)Se2太阳能电池中的聚光
光集中已被证明对太阳能电池有益,最显著的是使用高浓度和大规模光学的高效但昂贵的吸收材料。在这里,我们研究了具有纳米或微结构吸收剂的低成本薄膜太阳能电池的光集中。我们选择的吸收材料是Cu(In,Ga)Se2 (CIGSe),它已被证明具有22.6%的稳定记录效率,尽管它是一种多晶薄膜材料,但它对环境影响非常耐受。采用纳米尺度的方法,我们通过集成由介电材料制成的光子纳米结构,将光集中在CIGSe吸收层中。电介质纳米结构在其附近产生共振模式和场局域化。因此,当插入吸收层内部或邻近吸收层时,可以观察到吸收和效率的提高。与这种内部吸收增强相反,外部增强在微尺度方法中得到了利用:毫米大小的透镜可以用来将光集中到横向尺寸减小到微米范围的CIGSe太阳能电池上。与大型聚光器相比,这些微型太阳能电池具有改善散热的优点,并承诺紧凑高效的设备。光集中的两种方法都允许通过限制吸收剂的尺寸来减少材料消耗,无论是垂直的(电介质纳米结构的超薄吸收剂)还是水平的(聚光透镜的微吸收剂),并且具有显著的提高效率的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信